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Abstract
The manifest file of an Android app is crucial for app security as it declares sensitive app con-
figurations, such as access permissions required to access app components. Surprisingly, we 
noticed a num-ber of widely-used apps (some with over 500 million downloads) containing mis-
configurations in their manifest files that can result in severe security issues. This paper presents 
ManiScope, a tool to automatically detect misconfigurations of manifest files when given an An-
droid APK. The key idea is to build a manifest XML Schema by extracting manifest constraints 
from the manifest documenta-tion with novel domain-aware NLP techniques and rules, and 
val-idate manifest files against the schema to detect misconfigurations. We have implemented 
ManiScope, with which we have identified 609,428 (33.20%) misconfigured Android apps out 
of 1,853,862 apps from Google Play, and 246,658 (35.64%) misconfigured ones out of 692,106 
pre-installed apps from 4,580 Samsung firmwares, respec-tively. Among them, 84,117 (13.80%) 
of misconfigured Google Play apps and 56,611 (22.95%) of misconfigured pre-installed apps 
have various security implications including app defrauding, message spoofing, secret data leak-
age, and component hijacking.
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1 Introduction
Android follows a declarative app deployment model where each app is required to declare cer-
tain configurations in a file named AndroidManifest.xml in the root directory of an app package 
(APK) [3]. This app manifest file describes essential information about the app to both Android 
marketplaces and the Android OS to guarantee proper publishing, installation, and execution of 
the app on an end-user’s device. Among many others, an app mani-fest file declares a variety 
of important information, including the unique app package name, Android versions compatible 
with the app, app components and their security and access control settings, permissions re-
quested by the app, and configurations necessary for libraries and features needed by the app.
Due to its importance to app security and reliability, an app manifest file must pass multiple 
checks by Android app develop-ment tools during app development [6], by Google Play during 
app publishing [20], and by the Android runtime during app installa-tion and execution [5]. 
However, by examining the open-source code and documentation on how Android validates a 
manifest file, we found that the validation process does not provide systematic coverage of all 
possible manifest misconfigurations. While we can-not access the source code of Google Play, 
we notice from this documentation [11] that Google Play just filters the elements and attributes 
that are related to feature requirements and compatibility, so as to avoid the app being installed 
on an incompatible device. Consequently, this can lead to apps with misconfigured manifest files 
in the wild, creating security issues as witnessed by the dis-closed CVEs (e.g., CVE-2017-16835 
[1] and CVE-2017-17551 [2]). Moreover, our preliminary investigation showed that even some 
applications associated with world’s top vendor, e.g., Amazon as shown in Figure 1, may also 
involve such mistakes, which may lead to concerning purchase replay attack, inflicting losses to 
the vendor.
As such, it is imperative to perform a large-scale study to under-stand the problem of the mis-
configured manifest files, including the history of this misconfiguration problem, the prevalence of 
miscon-figuration in current market, and the impact of these miconfigured manifest in the entire 
ecosystem, so as to raise the awareness from the community and draw insights to help mitigate 
this problem. To perform a systematic and automatic check of the misconfiguration, we utilize 
a standard approach to validate the XML files with XSD schema. To generate the XSD schema, 
we leverage the official doc-umentation of Android manifest file, which is provided by Google 
because it is the only source and standard for developer’s reference when creating manifest 
files. Putting it all together, we develop ManiScope, an NLP-based context-aware analysis tool 
to identify the manifest entities and their constraints from the documentation, and then generate 
the XSD for the validation.
We have implemented ManiScope and tested it with 1,853,862 Android apps collected from Goo-
gle Play between January 2020 and May 2020, and 692,106 pre-installed apps from 4,580 Sam-
sung firmwares (which were released between September 2011 and Janu-ary 2020) collected 
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from SamMobile [18]. Our investigation revealed a worrying situation: for Googe Play apps, Man-
iScope detected 265,028 misconfigured elements in 230,330 apps and 718,207 mis-configured 
attributes in 428,440 apps (in total 609,428 unique mis-configured apps). For the pre-installed 
apps, ManiScope detected 1,731,451 misconfigured elements in 152,046 apps and 386,346 
mis-configured attributes in 114,494 apps (in total 246,658 unique mis-configured apps). These 
results indicate a concerning prevalence of manifest misconfigurations across mobile apps, and 
these problems can date back to the very early Android version (as early as Android 2.0+). More-
over, we found that 84,117 (13.80%) of misconfigured Google Play apps and 56,611 (22.95%) 
of misconfigured pre-installed apps could have various security issues, ranging from component 
hijacking, data leakage, and app crashes, among others.

Contributions. We make the following contributions:
• We present ManiScope, a novel and open-source tool that is able to extract manifest con-

straints from the Android documentation, build a manifest XML Schema, and detect miscon-
figurations in Android app manifests.

• We propose novel domain- and context-aware NLP techniques to extract manifest con-
straints from the documentation and handle ambiguities and incomplete sentences in the 
natural language texts of the documentation.

• We present a large-scale study on over 2.4 million apps and de-tected that about a third of 
these apps contain misconfigurations. We provide an analysis of the prevelance, history and 
the security threats of these misconfigurations and their root causes.

2 PRELIMINARIES

2.1 Android App Manifest File
An Android app is packaged as an archive file (APK) that con-tains app code, assets, certificates, 
along with an app manifest file called AndroidManifest.xml, which is an XML file that specifies 
app components (the building blocks of an app, such as activity and receiver), permissions, and 
various configurations needed for the proper execution of the app [3]. When installing an app, 
the Android PackageParser configures the app’s metadata and runtime settings based on the 
configurations defined in the app’s AndroidManifest.xml [5].
As illustrated in Figure 1, app manifest files are composed of XML elements. Each element has a 
start and an end tag, can have a number of attributes (e.g., attribute android:name at line 5 that 
sets the name of the receiver element), and can contain other nested elements. The elements are 
organized in a tree structure where a child element can belong to only one parent element (e.g., 
the <intent-filter> element at line 6 is nested in its parent element <receiver>).
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Figure 1. A simplified excerpt from the manifest file of a real-world app containing a misplaced permission 
attribute. Due to the severity of this misconfiguration, we redacted the name of the app and the vulnerable 

component until the issue is patched.

2.2 Misconfigurations in Manifest Files
The structure of a manifest XML tree specifies the relative positions of the manifest elements, 
though it does not enforce any particular occurrence constraints. Elements and attributes in an 
Android app manifest file can be required or optional, and some elements can also occur multiple 
times. For example, according to the Android Manifest Documentation [3], an <action> element 
must occur at least once inside an <intent-filter> parent element.
When developing Android apps, developers have to manually configure app manifest files, 
though there are some tools to partially automate some of the configurations. Such manual con-
figurations can certainly introduce errors, as evidenced by the example in Figure 1 in which the 
android:permission attribute, which is sup-posed to declare the permission required to access 
the <receiver> component, is incorrectly placed in the <action> element instead of <receiver>. As 
a result, the receiver component is left unpro-tected at runtime, allowing arbitrary apps to access 
and invoke its functionality.
To avoid misconfigurations, developers must clearly understand the XML Schema of app mani-
fest files, i.e., the correct structure and constraints governing elements and attributes in a mani-
fest file. In general, an XML Schema describes three classes of requirements [19], violating any of 
which causes misconfiguration: (1) Manifest vocabulary and structure, describing what the valid 
elements and attributes are and where exactly they can be placed. (2) Occurrence constraints 
dictating how many times an element or an attribute can appear. (3) Valid attribute values and 
their data types. Mis-configurations resulting from violating these requirements can be classified 
based on their root causes into the following categories:
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• Misplaced elements and attributes, which can be caused by (1) an element exceeding the 
upper bound of an occurrence (e.g., can only appear once but appeared multiple times), or (2) 
an element placed in an unexpected parent (e.g., if <action> element has an invalid parent 
<receiver>), or (3) an attribute declared inside a wrong element 

        (e.g., android:permission in Figure 1).
• Absent elements and attributes, which occurs when a required element or attribute is miss-

ing, i.e., violating its lower bound occurrence constraint.

Figure 2. Exemple XSD schema snippet for detecting the misconfiguration in Figure 1

• Unexpected elements and attributes, which can be caused by an element or attribute that 
does not appear in the valid manifest vocabulary, e.g., an undefined <foo> element or a mis-
spelled element in the app manifest file.

• Wrong attribute values, which can be caused by an attribute val-
ue that does not satisfy the required data types or allowed data val-
ues for the attribute, e.g., value true or false is misspelled for a Boolean type. 
Note that a misplaced element or attribute could also be categorized as absent. For instance, 
if <action> is misplaced inside <data>, which is required by <intent-filter>, it is identified as 
missing under <intent-filter> and misplaced under <data>.

 

2.3 Approaches for Validating Manifest Files
App manifest files must be validated to ensure their correctness. In fact, Google provides a num-
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ber of tools for this purpose. In particu-lar, at development time, Android Studio checks the man-
ifest XML tree for the absence of some critical elements and attributes [6]. During the publishing 
phase, Google Play checks the app mani-fest file and applies filters on special compatibility ele-
ments (e.g., <compatible-screen>) to decide which devices are compatible with an app [20]. At 
installation time, the Android PackageParser parses the app manifest file in the APK, checks for 
required ele-ments, and configures the app runtime accordingly [5].

A systematic and well-known approach to validate a manifest XML file is through the use of a 
corresponding XML Schema file that defines the constraints on the structure and content of the 
XML file. However, by checking the source code of AOSP [4], we did not find any XML Schema for 
app manifest files. Instead we found that AOSP uses hand-rolled code to validate manifest files 
[5]. We found that while AOSP validates all manifest attribute values and their data types [8], it 
uses ad-hoc constraints to validate the manifest structure itself (e.g., only checking for occurrence 
of certain ele-ments and attributes). These hardcoded checks result in incomplete coverage since 
hand-rolling a complete XML validator that can capture all possible cases of misoccurrences is 
an exhaustive and error-prone task. As a result, many apps end up on the market with critical 
misconfigurations, as shown in Figure 1. 

Therefore, to systematically validate app manifest files, we need to construct the XML Schema 
for Android app manifests and then perform the validation using the schema file. In particular, 
we need to know both the structure and occurrence constraints of elements and attributes of an 
Android manifest file, where the structure refers to the specific child and parent elements at each 
particular position of the XML tree and their corresponding attributes, and occurrence constraints 
refer to the upper and lower bounds of the occurrences of a child element in the tree, i.e., whether 
it is optional or required and how many times it can appear under the same parent.

After obtaining the structures and occurrence constraints of XML elements and attributes, vari-
ous XML Schema languages, such as Document Type Definition (DTD) [12], Relax-NG [17], Sche-
ma-tron [13], and XML Schema Definition (XSD) [45], can be used to develop a specification 
using these structures and constraints to val-idate XML files. XSD is the most popular one among 
these schema languages since it is also written in XML, offers a strong set of speci-fication fa-
cilities, and is widely supported by XML parsing packages for many programming languages [7, 
21]. XSD supports various fea-tures that can be used to directly describe the correct structure 
and constraints of Android manifest elements and attributes: it can de-clare valid child elements 
and attributes of each element, minimum and maximum occurrence of elements, and whether 
an attribute is required or optional, and so on. An example of an XSD file is shown in Figure 2. 
All the tag names in XSD files begin with common prefix xs: since they all belong to the XML 
Schema (XS) names-pace. Manifest elements such as <intent-filter> are declared one-by-one 
using <xs:element>. It can be noticed that an element is an <xs:complexType> if it contains 
both child elements and at-tributes. Child elements are then specified inside <xs:sequence> as 
<xs:element> references, and their number of occurrences are specified using the minOccur and 
maxOccur attributes. Similarly, valid attributes are specified in <xs:attribute> schema elements. 
For a full treatment of XSD, we refer interested readers to XSD definition [45].
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3 Overview
The goal of this study is to understand the prevalence, history and security impact of the miscon-
figuration of Android manifest files. As such, we need to first generate the validation schema for 
the manifest files. To do so, an intuitive approach is to extract manifest constraints by analyzing 
the documentation as it is the official guide used by app developers to develop manifest files. 
Unfortunately, this is still non-trivial, requiring overcoming multiple key challenges as discussed 
in the following.

3.1 Challanges
C1: Identifying Manifest-Related Documentation Pages. To automatically extract constraints 
from the documentation, the first challenge is to identify the documentation pages relevant to 
app manifest files. Currently, there are over 1, 000 HTML pages in the latest version of the An-
droid documentation, and they specify con-straints not only related to developing Android apps 
and configur-ing manifest files, but also to other XML files such as the Android resource XML 
file, which share the similar structure as the manifest documentation. As such, we need to avoid 
capturing descriptions in every documentation page; otherwise, a large amount of con-straints 
irrelevant to manifest file configuration may be erroneously extracted.

C2: Handling Ambiguity and Incompleteness in Manifest De-scriptions. It is challenging for an 
automated system to deal with ambiguities in the descriptions of manifest elements and attri-
butes since they are written in free-form text. Compared with prior NLP-based document mining 
techniques (e.g., [22, 32, 43]), we need to perform more complex tasks because we need to not 
only identify manifest entities referred to in a sentence and determine their re-lationships (parent 
or child), applicable positional and quantitative constraints (see §2), but also translate them to 
valid XSD.

Fortunately, we find that sentences discussing manifest elements and attributes have common 
structures. First, sentences describing how to configure manifest entities are mostly imperative 
sentences that use modal verbs, whereas descriptions specifying maximal occurrences use nu-
merical words to emphasize that an element is unique (e.g., ‘there is only one...’). Second, we 
find that the subjects and objects of complete sentences refer to the parent and child ele-ments 
respectively. For example, in sentence ‘An <intent-filter> element must contain one or more <ac-
tion> elements’, <action> is the current element and <intent-filter> is its parent. Although in some 
contexts, the parent element may be omitted for brevity (e.g., ‘The name must be specified’), the 
overall structure of subject–verb–object (SVO) remains.

C3: Performing Context-Aware and Domain-Guided Parsing. Since sentences in the docu-
mentation may omit parent elements for brevity, there may be relevant manifest constraints not 
captured by the above two sentence structures. In addition, specifications irrelevant to manifest 
constraints may be mistakenly identified as manifest constraints when they use sentences with 
SVO structure. Therefore, we need to carefully filter out irrelevant sentences by reasoning about 
the context in which a sentence occurs and also using the domain-knowledge extracted to guide 
the filtering.



Detecting and Measuring Misconfigured Manifest in Android Apps9

Interestingly, we noticed that the structural information in the manifest documentation can help 
build domain-knowledge and identify sentence contexts. Specifically, (1) the omitted entities are 
often in a structure context. For example, there is a sentence in the documentation for <activity> 
‘The name must be specified’, the omitted <activity> is exactly the name of the documentation. 
(2) The element and attribute names in the titles of each section (such as contained in) yields a 
dictionary as well as the structure of manifest-related entities, which can be used to build the 
domain knowledge and filter out the irrelevant and misplaced ones.

Figure 3. The Workflow of ManiScope.

Figure 4. An excerpt from Google’s official documentation for the <action> element.

3.2 Problem Scope and Assumptions 

In this work, we focus on identifying and measuring the unex-pected, misplaced, and missing 
manifest configurations by using constraints extracted from the Android manifest documenta-
tion. We assume that the manifest documentation is the ground truth that specifies all con-
straints needed for validating a manifest file. We also assume that input manifest files have valid 
value types since this is a requirement for compiling an app and is already han-dled by Android 
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development tools. Finally, extracting constraints from undocumented manifest elements or at-
tributes that may be internally supported by Android is out of scope.

4 Detailed Design
The workflow of ManiScope is shown in Figure 3. At a high level, it contains five key compo-
nents: Document Collector (§4.1), Positional Constraint Extractor (§4.2), Quantitative Constraint 
Extractor (§4.3), Scheme Generator (§4.4), and finally Manifest Validator (§4.5). In this section, we 
present the detailed design of these components.

4.1 Document Collector
As described in C1, we need to automatically collect the docu-mentations related to the manifest 
file, and extract the structured sections and descriptions for positional and quantitative con-
straint extraction, respectively. To avoid overly capturing the irrelevant elements and attributes 
when only using the structure of a docu-ment to determine whether it is related to an app mani-
fest, we use a recursive top-down traversal algorithm to identify the attributes and elements re-
lated to manifest descriptions. In particular, the Document Collector traverses the documentation 
pages by starting from the documentation page of the root element <manifest>, then recursively 
visiting the documentation pages of each child element.

Figure 5. An example illustrating the dependencies between the words in a sentence, and how the docu-
mentation sentences are divided into subject and object clauses. ManiScope partitions the sentences into 

subject and object phrases, and leverages the dependencies to recognize the elements and attributes with 
a state machine based parsing approach.

As a result, it fetches manifest documentation pages for all elements that appear in the
manifest file.

4.2 Positional Constraint Extractor
Given the collected manifest documentation pages, our Positional Constraint Extractor parses 
each documentation page and extracts child elements under ‘can contain’ and ‘must contain’ 
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sections and attributes under attributes sections, respectively. These child elements and attri-
butes are used to construct positional constraints, i.e., valid child elements and attributes for 
each parent element. For example, when parsing the document example in Figure 4, there is an 
android:name in the attributes section; therefore, we in-fer that <action> can have a child attri-
bute of android:name. We also infer that the <action> element has no child elements because 
there is neither ‘can contain’ nor ‘must contain’ sections in its documentation page. When all the 
positional constraints are extracted, the parser generates a dictionary of all of the names of valid 
elements and attributes, which is used for filtering out non-manifest related constraints that may 
be mistakenly identified by the NLP parser. In addition, the parser also extracts descriptions of 
elements under the descriptions section, and attributes under each attribute name, which are 
required to extract quantitative constraints as described next.

4.3 Quantitative Constraint Extractor
Since the quantitative constraints are located in descriptions, our Quantitative Constraint Ex-
tractor uses NLP techniques to extract these constraints from free-form sentences in the de-
scriptions. How-ever, these natural language sentences are usually ambiguous and in-complete. 
To deal with the challenges of complex sentences (C2) and improve extraction precision (C3), 
we design two sub-components:(1) Entity Recognizer (§4.3.1) to identify manifest entities (i.e., 
ele-ments and attributes) and handle ambiguities, and (2) Constraint Filter (§4.3.2) to filter out 
non-manifest related constraints.
4.3.1 Entity Recognizer. As discussed in C2, to extract constraints from free-form sentences, we 
need to extract manifest entities, their relationships, and handle missing references. To illustrate 
these challenges, we present two sentences in Figure 5 with a normal voice (containing nsubj de-
pendency) and a passive voice (contain-ing nsubjpass dependency). The first sentence is written 
in normal voice, and it suggests that there is a minimum constraint for the child element <action> 
in the parent element <intent-filter>. We observe that these sentences often appear in Sub-
ject-Verb-Object structure. For instance, the subject phrase could be ‘An <intent-filter> element’, 
and the object phrase could be ‘one or more <action> elements’. Therefore, we can extract the 
parent and child entity from the subject phrase and child phrase, respectively. How-ever, since 
these phrases still contain complex structures such as modifiers and conjectures, we still need to 
locate the exact word such as <intent-filter> from these phrases, and to handle sentences where 
object phrases are omitted (e.g., ‘The name must be specified’). To this end, we extract this infor-
mation by first (i) recognizing sen-tence dependencies using a Finite State Machine (FSM), then 
(ii) handling missing entities using contextual information.
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Figure 6. The finite state machine (FSM) for identifying ele-ments, attributes, and $context.

(I) Recognizing Sentence Dependencies. We observe that in sentences specifying manifest con-
straints, the parent and child manifest entity appear in subject and object phrases, respectively 
(e.g., the child element <action> is in the object phrase ‘one <ac-tion> element’). Therefore, our 
Entity Recognizer extracts the parent and child entity by identifying the dependencies of subject 
and object phrases until it finds a manifest entity or aborts the parsing based on the FSM, ac-
cording to the dependency encountered at each word. We first identify dependencies used in the 
extraction procedure, including subjects (nsubj, nsubjpass), direct objects (dobj), adjective and 
noun modifiers (amod, nmod), compound state-ments (compound), and determiners (det) such 
as the name of an element. We then process these dependencies using the FSM to trace depen-
dencies and identify entities as shown in Figure 6.

Table 1. Context filtering rules of ManiScope.

In the following, we discuss how our FSM-based approach works using an example of extracting 
the parent element <intent-filter> from the first sentence in Figure 5. Specifically, as shown in 
Figure 6, starting at the state verb (points to the word ‘contain’ in the input as shown in Figure 
5), our Entity Recognizer first moves to the noun state (points to word ‘element’) based on the 
state transition of nsubj. Next it moves to adjective state through amod and points to the word 
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‘<intent-filter>’. Since there are no more dependencies according to the parsed dependencies 
illustrated in Figure 5, the Entity Recognizer moves to a special identified state through the none 
edge. A none edge is a special edge where the state cannot be transferred. As such, when reach-
ing the identified state, we successfully identify the word ‘<intent-filter>’ as a manifest entity. If 
there is no object phrase in the sentence (e.g., no object phrase after ‘specified’ in ‘The name must 
be specified’), the Entity Recognizer re-gards the corresponding entity as missing and holds its 
processing until more context information is collected, which will be handled in the next step. If 
the Entity Recognizer moves to the exit state without reaching the identified state, the tracing 
process aborts and no constraint is extracted from the sentence.

(II) Identifying Context Information. Due to the complexity and ambiguity of sentences, there is 
a chance where manifest-related constraint is not uncovered by our Entity Recognizer. In general, 
there are two scenarios where a sentence containing manifest con-straints may be missed: 1) 
when the sentence has a missing entity that needs context information to be resolved (e.g., ‘The 
name must be specified’), and 2) when the identified word does not point to a specific manifest 
element or attribute (e.g., ‘this element must be placed inside the <manifest> element’). There-
fore, we need to handle these incomplete and ambiguous manifest entities to avoid missing 
manifest constraints. To accomplish this, we notice that contextual information in documentation 
sections and paragraphs provide enough hints for inferring these missing entities.

• Section-level Context. Section-level context refers to informa-tion about element and attri-
bute names associated with section ti-tles in the documentation . For example, if the sen-
tence ‘The name must be specified’ appears in the description of the android:name attribute 
in the documentation section for <activity>, we can associate it with the <activity> element 
as its attribute. When a parent entity is missing, we associate the parent entity with the ele-
ment name in the title of documentation (because only elements can be parent entities that 
contain child elements or attributes). When a child entity is missing, we associate the en-tity 
with the nearest section context: if the sentence is in the description of an element, we as-
sociate the entity with the el-ement name; if it is in an attribute description, we associate it 
with the attribute name.

• Paragraph-level Context. At the beginning of paragraphs, we observe that a key sentence 
is often used to summarize the mean-ing or functionality of an element or attribute. As such, 
we utilize this context to improve the constraint extraction by identify-ing the subject and 
object from the first sentence of the para-graph (taking sentence dependencies into ac-
count). Of course, not all paragraphs provide contextual information in the first sentence, 
and non-manifest related information may be mis-takenly generated. For example, in the 
documentation of the android:backupAgent attribute under the <application> el-ement, the 
first sentence says ‘The name of the class that im-plements the application’s backup agent’. 
Although the sentence merely indicates that the attribute is associated with a backup agent 
class in the source code, the context information may be mistakenly extracted as backupA-
gent. As a result, when we later encounter the sentence ‘The name must be specified’ in the 
con-text of android:backupAgent we may identify the child to be ‘name’ but mistakenly iden-
tify parent as backupAgent, which is not a valid manifest entity. Hence, it is vital for utilizing 
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the knowledge we extracted about manifest file to filter out these non-manifest constraints 
to avoid mistakes in the schema.

4.3.2 Constraint Filter. 
As discussed in C3, when extracting man-ifest constraints by parsing sentence structures, 
non-manifest con-straints can appear in sentences with similar structures. Meanwhile, con-
straints not related to manifest may occur when we infer miss-ing entities from contextual infor-
mation. For example, in the de-scription of android:label in <activity> documentation, ‘The label 
is displayed on-screen when the activity must be represented to the user.’ has a similar ‘sub-
ject-verb-object’ structure: written in passive voice with a modal verb ‘must’, our Entity Recogniz-
er identifies the child entity <activity> from the subject phrase, then extracts the missing parent 
from context information in the section title (i.e., <activity>). Subsequently, our Entity Recognizer 
would extract a constraint that says ‘<activity> must be in <activity>’, which is of course incor-
rect. As such, we need to filter out these erroneously-extracted constraints, and have designed 
five rules as shown in Table 1 to filter out the non-manifest constraints at three levels: context, 
sentence, and word.

• Context Filter. The context filter uses the contextual relation-ship between the parent and 
child entity to filter the non-related constraints. There are three rules used by this filter: (R1) 
When extracting constraints from broken phrases and sentences that do not contain any 
manifest entities, our recognizer may treat both the parent and child as missing and extract 
them from the context. However, there may be sentences completely irrelevant to manifest 
constraints where both parent and child entities are mistakenly inferred from the context. 
Hence, we need to focus on sentences containing at least one entity explicitly related to 
manifest (not inferred from contexts). As such, the constraints where both the parent and the 
child are extracted from contextual information need to be filtered out. (R2) As we focus on 
manifest-related constraints, it is natural that we force all identified parents and children to 
be contained in the manifest dictionary. (R3) In addition, we need to further ensure that ex-
tracted child is within the valid children list of the extracted parents. For instance, if a parent 
is action and a child is <intent-filter>, this is not a valid manifest constraint because we know 
from manifest dictio-nary that <intent-filter> cannot be a child of <action>.

• Sentence Filter. On top of contextual information, the sentence structures also provide hint 
for improving the accuracy. Particu-larly, in rule R4, we use sentence structure to filter sen-
tences with noun (acl) or adverbial clauses (advcl) that voids occurrence constraints in main 
clauses such as ‘must have’. For example, in ‘You should always declare this attribute if you 
want to configure [...]’, although it seems to be a minimal constraint because this is an imper-
ative sentence with a phrase should always, the adver-bial clause ‘if you want to configure’ 
have voided such minimal requirement because it indicates that the attribute is mandatory 
only when the developer wants a certain configuration to be effective, whereas it is optional 
if developers do not want the configuration. Thus, the attribute mentioned in such a sentence 
is still optional in the manifest file.
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• Word Filter. We also utilize words in sentences to reduce errors in occurrence constraint 
extraction, both for minimal and maxi-mal constraints. On one hand, model verbs that carry 
strong tone like ‘must’ have to appear to clearly convey the minimal con-straints (‘must have’ 
constraints). Therefore, we systematically checked all the modal verbs, and found only must 
and should conveys such strong tone, whereas other modal verbs can merely convey sug-
gestions or predictions, such as will and may. On the other hand, numerical modifiers, when 
accompanied by model verb, help identifying maximum constraints. For example, in ‘Only 
one instance of the <compatible-screens> element is allowed in the manifest’, the manifest 
entity <compatible-screens> has a numerical modifier one. Therefore, it specifies that the 
max-imum of the element is 1. As such, the word filter filters out non-manifest constraints 
with a set of modal verb keywords and the numerical modifier dependency nummod (R5)

4.4 Schema Generator
With positional constraints and quantitative constraints extracted and reformed into structured 
data, we then generate the XSD file for validation. In particular, the positional constraints are 
transformed by declaring each element with xs:element and then listing its child elements in 
<xs:element> and attributes in <xs:attribute>, respectively, e.g., in the declaration of <intent-fil-
ter> at line 1 in Figure 2, it contains references to child elements such as <action> at line 4, and 
attributes such as android:autoVerify at line 8 (which is declared at line 11). With the structure 
of elements and attributes being constructed in XSD, quantitative constraints are generated by 
setting minOccurs and maxOccurs for elements, and required for attribute (no maxOccurs for 
attributes as they are unique by nature). For example, the minimum occurrence of <action> is 1, 
and therefore the minOccurs of <action> is set to 1.

4.5 Manifest Validator
With the generated XSD schema, our Manifest Validator validates an app manifest file by de-
tecting three types of misconfigurations: missing, misplaced, and unexpected. Missing entities 
are identified when the validator finds an element or attribute missing. Misplaced and misspelled 
entities, however, are both reported as unexpected keywords, so we need to compare the related 
element or attribute name with the manifest dictionary. If the entity is a valid mani-fest name, it is 
considered misplaced; otherwise, the entity name is misspelled. However, although our validator 
can detect all the unexpected attributes and elements, they are not always misspelled by devel-
opers. For example, compilers may add attributes to pro-vide information of the compiler, and 
there may be system-only elements and attributes that do not appear in the documentations. 
As such, to avoid false-positives of identifying these manifest en-tities as “misspelled”, we only 
focus on the following three types of misspelling errors:

• Prefix Errors. This error occurs when developers forget to add or mistakenly add the android: 
prefix for an attribute (e.g., android:package v.s. package, and android:name v.s. name). To 
identify this type of error, we remove the android: prefix of the encountered attribute name 
and compare the attribute name to attributes names in the manifest dictionary (R6).
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• Capitalization Errors. A capitalization error occurs when the name of an element or attribute 
is mistakenly capitalized (e.g., meta-data v.s. Meta-Data). To identify such errors, we match 
the lowercase prefix-free strings of unexpected names to names in the manifest dictionary 
(R7 and R8).

• Typos. To identify misspelled element or attribute names (e.g. meta-data v.s. mata-data) 
we compute the Levenshtein edit dis-tance between an unexpected name and names in the 
manifest dictionary and check if it is below a certain threshold α, indicat-ing the two words 
are highly similar (R9 and R10). This threshold must be larger than 0, because no typos will 
be identified other-wise. However, if this threshold is set too high, it may introduce a large 
amount of false-positives (e.g., the distance between unex-pected name tag and a valid 
manifest element name data is 3, and hence if the distance is set too high, our tool will regard 
the tag as a misspelled). To minimize possible false-positives, we set α = 1 as default value 
for our tool, though it can be configured by users.

5 Evaluation
We have implemented ManiScope in Python. For documentation parsing, we used the lxml [14] 
and BeautifulSoup4 [9] libraries. To extract grammatical structures from sentences, we used the 
NLTK CoreNLP Parser 3.9.2 [26]. We evaluated ManiScope on 1.8 million Android apps down-
loaded from Google Play between January 2020 and May 2020, and 0.6 million pre-installed 
apps collected from 4,580 Samsung firmware (released between September 2011 and January 
2020) from SamMobile [18]. We used axmlparserpy [16] to decode the binary manifest file of 
each APK into plain-text XML. Our experiments were carried out on a laptop running Ubuntu 
18.04.1 with 8 GB RAM and an Intel Core i7-8500U CPU. In this section, we first present our 
evaluation results of schema extraction in §5.1. Then, we present our findings with regard to mis-
config-urations in §5.2. Lastly, we provide statistics on security-related misconfigurations in §5.3.

5.1 Manifest Constraint Extraction
(I) Extraction Result. We first present how ManiScope performs when provided with the Android 
documentation. Since it is a fully automated system, it can parse all Android documentation 
includ-ing the historical ones. As such, we tested ManiScope with 20 different Android documen-
tation from Android developers website from the most recent one (after 7.1.2) to the oldest avail-
able one, namely Android 1.6, and this result is reported in Table 2. Note that the source code of 
the historical documentation after 7.1.2 is no longer published on public Google repositories, and 
we obtain the most recent one by directly fetching the online HTML files.
In particular, as illustrated in the first row for the most recent doc-umentation, ManiScope col-
lected 26 documentation files related to manifest declaration, and identified in total 348 sections 
containing 849 paragraphs. When printing them in a format preserved manner (they are orga-
nized in a structure), we obtained 190 pages. Among the paragraphs parsed, ManiScope found 
that 1,326 sentences are written in normal voice and 256 are written in passive voice. Ad-dition-
ally, there are 404 phrases that do not have nominal subjects, either in normal voice or passive 
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voice, which are identified as simple phrases rather than complete sentences. Our Constraint 
Fil-ter filtered over 90% of non-manifest related constraints through context-filtering rules, and 
the word filter rules filtered out addi-tional 1.3% of non-manifest constraints, and eventually it 
obtained 254 manifest constraints for 28 elements and 125 attributes.

(II) The Evolution of Manifest Documentations. Being able to analyze the historical manifest 
documentation, we can draw insights such as how they evolved. As such, we quantified such 
evolution by presenting the difference between two adjacent ver-sion of manifest documenta-
tions, as shown in Figure 7. First, we observe that the total sentences of manifest constraints, 
although added or removed, are constantly growing, where the growth rate can range from 0% 
to over 50%. Second, we notice that during up-dates, sentences may often be removed with 
new sentences added, be those removal of deprecated elements or attributes or changes made 
to descriptions. Interestingly, we also observe that fixing for some typos that eventually caused 
confusion among developers resulted in some of the misconfigurations, which will be introduced 
in the correctness evaluation of documentation later.

Table 2. Constraint Extraction Statistics of ManiScope. (vers. = version, sect. = section, para. = paragraph, 
constr. = con-straints, extra. = extracted)

Figure 7.The evolution of manifest documentations
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(III) False Positives (FPs) and False Negatives (FNs) Analysis of Extracted Constraints. The 
accuracy of the extracted constraints directly determines the accuracy of our misconfiguration 
detection. Therefore, we must first make sure there is no false positive or false negative. If so, 
we must correct them. To validate the accuracy of our constraint extraction, we chose the most 
recent documentation and manually constructed the schema by going over all the docu-menta-
tions. In total, there are 190 pages with 849 paragraphs. To generate the ground truth, we have 
two security researchers each read the documentations, manually extracted the constraints, 
wrote the manifest schemas; then the two researchers cross-validated their results to converge. 
It took 20 days for both researchers to read the documentation, pick out manifest-related docu-
mentations, understand contexts, construct schema, and validate them.

Then, we compared the manually constructed ground-truth schemas with the automatically 
generated ones. Among them, we found no false positives but 3 false negatives in constraint 
genera-tion out of 257 (1.17%) total schema constraints generated manually. The reason is that 
the documentation of compatible-screen did not follow the documentation structure. In particu-
lar, it did not specify its child elements in the ‘can contain’ section as other documentations but in 
the ‘child elements’ section which is a new section that does not exist in other documentations. 
As a result, ManiScope failed to determine that (1) screen is a child of compatible-screen, and 
(2) android:screenSize and android: screenDensity is valid attribute in screen, resulting in 3 false 
negatives. As this is due to the inconsistent structure of the docu-mentation and easy to fix, we 
manually added these elements and attributes to the generated schema of all versions, and then 
the generated schema is used to perform the large scale analysis on Android apps as 
presented next.

Table 3. Detailed overview of the identified misconfigurations with respect to the number of downloads for 
Google Play apps, and different system version for pre-installed apps. Note that Cap. represents Capitaliza-

tion error.
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5.2 Manifest Misconfiguration Detection

(I) Detection Result. With the XML schemas reconstructed by ManiScope, we then use them to 
detect the misconfigurations in most recent apps in Google Play and preinstalled apps in his-tor-
ical firmware, whose overall results are presented in Table 3. Note that the subtotal of apps may 
not always be equal to the subtotal of misconfigurations as a single app may contain multiple 
misconfigurations. For Google Play apps, we identified 812,763 mis-placed configurations, 5,379 
missing configurations, and 165,093 misspelled configurations. For pre-installed apps, we found 
301,654 misplaced configurations, 1,730,628 missing configurations, and 85,515 misspelled 
configurations. We found that manifest miscon-figurations are quite prevalent in real-world apps 
where more than 30% of these apps have at least one misconfiguration.

Misplaced Configuration. Most of the misconfigurations among manifest files are misplaced 
configurations, and ManiScope iden-tified 261,089 misplaced elements and 551,674 misplaced 
attributes among the 1.8 million Google Play apps, and 814 misplaced el-ements and 300,840 
misplaced attributes among the 0.6 million pre-installed apps, as shown in Table 3. We also found 
that most of the misplaced attributes were related to feature requirements (e.g., android:hard-
wareAcclerated, android:required), and most of the misplaced elements were frequently used 
manifest elements (e.g., <meta-data>, <category>), and elements used to configure access per-
missions (e.g., <permission>, <uses-permission>). Ad-ditionally, we observed misconfigurations 
in extremely popular apps related to icons and themes (e.g., the YouTube app contained a mis-
placed android:theme attribute), although they are likely to be of no security concern.

Missing Configuration. For Google Play apps, missing config-urations occur in both elements 
and attribute. For missing ele-ments, all the 3,900 misconfigurations are related to <action> ele-
ment in <intent-filter> element. The missing attributes, on the other hand, mainly involved in 
component name attributes (e.g., android:name) and compatibility attributes (e.g., android:minS-
dk Version). One possible explanation is that the compiler already examines some critical missing 
problems and aborts compilation if these misconfigurations exist. However, missing configura-
tions are still concerning since they can result in unavailability of app components and create 
compatibility issues. For example, if the android:minSdkVersion attribute in the <uses-sdk> ele-
ment is missing, the system regards the app as compatible with all Android versions, which can 
cause the app to crash.

For pre-installed apps, although ManiScope did not find any missing attributes, we still identi-
fied a large amount of missing <action> (1,673,727 of 1,730,628) and <application> (56,901 of 
1,730,628). This could be explained by the difference between pre-installed apps and Google 
Play apps. For instance, compared with Google Play apps that rely on Intents to perform func-
tionality, most of the pre-installed apps do not need to specify actions for intent-filter, and there-
fore many <action> elements are not present in <intent-filter> element.

Misspelled Configuration. ManiScope detected a large num-ber of misspelled elements and at-
tributes. Among them, we found that there are many more typos than capitalization errors (such 
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as Service v.s. service) in misspelled elements. Also, most of the cap-italization errors of elements 
(30 of 39) have the first character capi-talized (e.g., Activity). All the 9 capitlization errors in 
pre-installed apps are the first-character-caplitalization problem of <service> (i.e., Service). For 
typos of elements, most are due to spelling errors (e.g., mata-data v.s. meta-data, which ac-
counts for 5,585 miscon-figuration among the 6,446 misconfigurations). Another source of typos 
comes from a missing hyphen (e.g., intentfilter v.s. intent-filter), and incorrect usage of plural/
singular form (e.g., support-screen v.s. support-screens). For pre-installed apps, 472 out of 486 
misconfigurations are typo from intent-filter to intent-flter, whereas the rest 14 are plural prob-
lems, i.e., permission spelled into permissions. For the top misspelled at-tributes, we found that 
missing prefixes are most prevalent (e.g., exported v.s. android:exported).

Table 4. CVSS 3.1 scores of security-related misconfigurations. AV: Attack Vector, AC: Access Complexibil-
ity, C: Confidentiality Impact, I: Integrity Impact, A: Availability Impact, G: Google play app, P: pre-installed 

app. .  .  .  .  .  .   

(II) FP and FN Analysis of the Detected Misconfigurations. To confirm whether there are any 
FPs and FNs in the identified misconfigurations, we manually checked random samples of 500 
misconfigurations identified by ManiScope from pre-installed and Google Play apps, respectively. 
Among these 1,000 misconfigu-rations, we identified zero FNs but 27 FPs (2.70%). For the false 
positives, we found that the root cause is due to the typos in the official documentations, which 
involve two attributes: (1) 5 out of 27 FPs involve android:allowBackup, which was misspelled 
into android:allowbackup from 4.4.2 to 4.4.4. As such, ManiS-cope may only regard android:al-
lowbackup as correct name for a certain version. If a manifest file contains android:allowBackup 
in application element, which is actually correct, ManiScope identifies it as misspelled instead, 
resulting in a FP. (2) 22 out of 27 FPs involve resizeableActivity, where the android: prefix is miss-
ing from the documentation. As such, ManiScope will identify the correct attribute with prefix as 
misspelled, resulting in a FP. Interestingly, although the typo of allowBackup is fixed after 4.4.4 
(but still causing FPs when ManiScope analyzes apps for these versions), the typo of resizeable-
Activity remained until our responsible disclosure as in July 2021.

The reason why we have zero FN is two-fold. First, identifica-tion of positional constraint will 
not yield FN because we have enforced an allow-list mechanism to detect misplaced manifest 
en-tities. As such, the positional constraint will be even stricter than the documentation if we fail 
to extract any positional constraints. As manifest files containing misplaced element will for sure 
be inconsistent with the documentation, it will for sure be identified as misplaced by ManiScope. 
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Second, although the quantitative constraint extraction which involves NLP may have FN if we 
fail to extract some quantitative constraints (thus making the constraint less strict than docu-
mentation), we have manually validated with the documentations and found no such a problem.

5.3 Security-Related Misconfigurations
(I) Severity and impacts of the misconfiguration. To deter-mine the security impact of these mis-
configurations, we manu-ally checked all of the elements and attributes associated with the mis-
configurations to understand their potential security impact. Among them, we identified 2 ele-
ments and 13 attributes that could have an impact on security. To rate the security severity of the 
identified misconfigurations, we categorized them based on their expected severity according to 
the CVSS (Common Vulnerability Scoring System) 3.1 [10] scoring metric. This metric is widely 
used in industry and academia to provide an assigned Common Vulner-abilities and Exposures 
(CVE) with a severity score. A CVSS score includes six metrics that can be scored with values of 
high, medium, and low security impact: the attack vector (same network, adjacent network, local, 
or physical access), access complexity (whether an attacker can expect repeatable success or 
needs to create certain conditions), confidentiality impact (whether all the exported com-ponents 
are divulged to the attacker), integrity impact (whether the attacker can manipulate the file and 
data freely), and availability impact (whether it causes a denial of service, or heavy performance 
losses). The CVSS scores for these 15 misconfigurations are pre-sented in the 
Score-column of Table 4.

According to the CVSS system, among these 15 misconfigura-tions that could cause security 
concerns, 3 of them have high sever-ity, 10 have medium severity, and 2 have low severity. These 
miscon-figurations can result in various security issues, including compo-nent hijacking, data 
leakage, and app crashing. For instance, we can see that apps with a misplaced android:per-
mission attribute are associated with most installs, which may cause purchasing replay attacks. 
In addition, some misconfigurations (e.g., the data leakage and component hijacking caused by 
the android:allowBackup and android:exported attributes) may also affect both thousands of 
Google Play apps and pre-installed apps. However, compared to Google Play apps, the pre-in-
stalled apps make less mistakes, and these pre-installed apps contain significantly less miscon-
figurations in elements and several attributes (e.g., permission). This might be explained by the 
limited but essential functionalities of pre-installed apps that make developers avoid using some 
manifest entities.

(II) Affected apps with security-related misconfiguration. To further understand the effects of 
these misconfigurations, we grouped the Google Play apps based on their categories and the 
pre-installed apps on the firmware versions, as shown in Table 5, where the cell color denotes 
the scale of total install numbers of affected apps. We notice that most of the misconfigured apps 
are in the game category, which may be explained by additional system resources required by 
games to avoid decreased performance or process termination. For pre-installed apps, the mis-
configured apps also grow as total amount of apps grow: most of the pre-installed apps are in 
version 4 to 8, and the problem still exists in recent devices after version 7.
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Table 5. Distributions of security-related misconfiguration in Google Play and Preinstalled apps.

6 Security Case Studies

6.1 Component Hijacking
There are several attributes in the manifest file to protect a compo-nent from unauthorized ac-
cess (i.e., component hijacking). However, with misconfigurations of those attributes, the com-
ponent would have been exposed to attackers. Through a victim’s component, a malicious app 
can perform illicit actions such as component hijack-ing, assume there is a malicious app in the 
victim’s phone and this app will attack the app with misconfigured attributes.

Misplaced android:permission attribute. This attribute speci-fies the permissions required by 
other apps for component com-munication, in order to defend against unauthorized access from 
apps that do not have these permissions. Misplaced permissions will allowing arbitrary apps 
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to interact with them, thereby making the apps vulnerable to component hijacking attacks. As 
presented in Table 6(A), among the 10,348 apps that contained misplaced permission attributes, 
9,627 of them were related to payment as shown in Figure 1, and all of these affected pay-
ment components are associated with the Amazon Appstore with the majority of these apps 
being games (6,561/9,627). We were surprised to find that this flaw primarily stemmed from an 
incorrect code snippet provided by Amazon official support team [15] for the Amazon in-app 
pur-chasing SDK. Technically, this permission is used to protect the app from fraudulent attempts 
to replay transactions. Ironically, such protection is voided by the erroneous code snippet, leaving 
thou-sands of apps vulnerable to fraudulent attacks: with the permission enforcement ineffec-
tive, apps can be exploited by purchasing an in-app item and capturing the transaction receipt 
sent from Ama-zon Appstore to the app, then replaying that same receipt to the corresponding 
receiver at will to repurchase more units without paying. This vulnerability impacted very popular 
apps, some of which with more than 100 million installs. We responsibly disclosed this vulnera-
bility to impacted app developers and Amazon, and it has been confirmed right 
after our disclosure.

Table 6. Top five categories of apps affected by security-related misconfigurations of different types.

6.2 Data Leakage
On Android, private app data can be copied out of a device using the adb backup command if 
an app has its android:allowBackup attribute set to true. In this case study, we present a data 
leakage caused by a misplaced android:allowBackup attribute.

Misplaced android:allowBackup attribute. This attribute should be set in the <application> ele-
ment to specify whether or not the app allows its data to be backed up and restored. When de-
velopers set this attribute to false, their intentions are likely to keep sensi-tive user data protected 
by preventing this data from being extracted from the device. However, if developers configure it 
to be false and misplace it, it will lead to data leakage attacks (i.e., perform backup through adb) 
since the default value of this attribute is true. In total, we have identified 7,432 Google Play apps 
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that have such mis-configuration, as shown in Table 6(B). A concrete example we have investi-
gated is a game named superOscar (with over 10 million downloads) where the android:allow-
Backup=”false” is placed inside the <manifest> element, allowing attackers with physical access 
to obtain the login credentials through the backup process.

6.3 Channel Hijacking
Interestingly, on top of the misconfigurations of manifest elements or attributes that are in the 
documentation, we also detected a wide usage of elements and attributes that are not on the 
documentation, appearing as unexpected elements/attributes but not identified as typos. This 
is caused by a set of undocumented manifest entities for applications from Android or OEM 
producers carrying system sig-nature only, which are designed for testing or privilege-protected 
configuration. Unfortunately, there are still third-party developers that attempt to use these ele-
ments or attributes for configuration, which will eventually be ignored by Android. For instance, 
among the undocumented elements, we found a particular element called protected-broadcast 
which appeared in 4,098 apps in total. Due to space limits, we only present the top five catego-
ries of each types of componentss as presented in Table 6(C), which contains 3,261 apps in total. 
This element is only usable by pre-installed privileged system apps and the Android framework, 
allowing them to restrict certain broadcast actions to be sent only by the system. When this 
element is configured in third-party apps, the Android PackageParser will silently ignore the el-
ement and no protection will be granted. This can create a severe vulnerability since any app on 
the device can send these messages and the receiving app will treat them as though they have 
been sent by the system.

7 Discussion

7.1 The Root Causes
There are multiple reasons why misconfigurations exist in the man-ifest of real-world Android 
apps. One plausible cause of misconfig-urations is developer’s carelessness, which is similar 
to the causes of many other security vulnerabilities. Ideally, instead of allowing developers to 
manually configure the manifests, additional tools should be provided to automate these config-
urations to reduce potential errors. Second, as evidenced in §5, the official documenta-tion pages 
provided by Google can contain mistakes (e.g., typos, or missing attributes). These errors can 
cause confusion to developers, and lead to misconfigurations in the manifest files. Finally, similar 
to many other bugs, code reuse is another root cause. For instance, the Amazon app defrauding 
case caused by the manifest misconfig-uration of the component exposed 9,474 apps to de-
frauding due to a single misplaced attribute, and we believe this is because develop-ers likely 
copied the same code from the official guide on Amazon website when integrating the amazon 
in-app purchasing service.
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7.2 Mitigation
Explicit warnings during validation. The Android operating system currently only triggers error 
logs on essential problems in app manifest files, and these error logs cannot be easily viewed by 
the users. Android system could proactively display the warnings to developers and end-users, 
to help them identify and fix any issues.

Correct and clear documentations. IDE and SDK providers such as Google and Amazon, should 
provide clear documentation to fa-cilitate developer comprehension for manifest configuration. 
They also need to ensure that the code snippets provided in their docu-mentation and online 
resources are correct. Otherwise, defects in the manifest snippets could be propagated to a large 
number of apps. In addition, they should provide systematic, rigorous validation tools for devel-
opers to proactively detect and fix misconfigurations.

Ensuring manifest file correctness. For app developers, they have to ensure that they under-
stand the configurations correctly, and then leverage automated tools to reduce errors. Mean-
while, they have to be careful copying snippets online as they may contain mistakes that eventu-
ally impair the security of their applications.

7.3 Limitations and Future Work
Covering undocumented elements and attributes. Although ManiScope identified all the mani-
fest elements and attributes de-fined in the official documentation, there may be other elements 
and attributes defined elsewhere. For instance, developers might define their own attributes and 
elements. Also, there might be some attributes and elements exclusively for pre-installed apps. 
Future work could automate the element and attribute extraction from other sources in addition 
to the official documentation.

Providing more comprehensive case studies. In this paper, we only discussed security-related 
cases from three categories of mis-confgiurations. An immediate future work could be perform-
ing more comprehensive case studies to measure and identify the po-tential attacks to raise the 
attention from community and fix the problems to prevent from exploitation.

7.4 Responsible Disclosure
We have disclosed our findings to Amazon about the issues in apps that use its in-app purchas-
ing SDK, and the incorrect snip-pets in its documentation and online forum. We have also dis-
closed all issues involving android:allowBackup attribute and <protected-broadcast> element to 
developers of impacted apps. Our disclosure of the misconfigurations have been confirmed by 
var-ious developers, and we were informed that they have fixed or will fix the issue in the future. 
We had also informed Google about typos in documentations, and the issue was then fixed on 
July 13th, 2021.
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8 Related Work
Extracting information of interest using NLP techniques. As a powerful technique, NLP has 
been widely used to extract infor-mation of interest from free-form texts. For example, to extract 
constraints from technical documents, Kof et al. and Sadoun et al. [36, 42] combined lexical, 
syntactical, and semantic analysis. Ko-rner et al. [37] integrated part-of-speech tagger, statistic 
parser, and named entity recognizer to extract the information after splitting the text into chunks, 
and then validated them with common sense. NLP has also been used to solve various security 
issues, such as de-tecting policy declaration and contradictions (e.g., [22]), bug finding (e.g., [27]), 
and cybercrime (e.g., [29, 38, 39, 41, 46]). All of these ef-forts also need to solve the ambiguity 
problem. Various approaches have been proposed, by adopting data mining [44], developing 
deep learning models [32], or using crowd-sourcing approaches to man-ually identify ontologies 
[43, 47]. We enrich the state-of-the-art with NLP techniques to extract XSD 
from documentations.

Android security analysis. Numerous prior efforts on Android security have mainly focused on 
investigating and identifying secu-rity threats in Android apps including requesting excessive 
permis-sions, component hijacking, and insecure driver implementations. For instance, for ana-
lyzing permission issues in Android systems, PSCout [23] adopted code analysis to trace the path 
of API calls and permission checks, produced a specification of API permission re-quirements, 
while Backes et al. [24] performed analysis of Android permission model across different Android 
versions. Approaches to derive precise protection by converting CFG [24] to Access-control flow 
graph determining necessary protections have also been pro-posed [24]. Additionally, there have 
been efforts that looked into insecure components and driver implementations [30, 31, 34, 40, 
50–52]. Compared to these efforts, we systematically investigate novel security issues caused by 
manifest misconfigurations.

Detecting misconfigurations. On detecting misconfigurations of Android manifest files, Jha et 
al [33] identified configuration errors in about 13, 000 Android apps using manually constructed 
constraints. The study, however, relies on predefined rules gathered by manually reading the 
documentations, and therefore cannot be adopted to generate schema for various versions of 
documentations for pre-installed app validation. Additionally, the manual approach did not pro-
vide a comprehensive coverage of manifest configu-rations, quantitative constraints, nor poten-
tial security issues. To identify potential policy misconfigurations in access control sys-tems, Bau-
er et al. [25] applied association rule mining on previously observed accesses to extract statistical 
patterns (i.e., rules), and then used the rules to detect misconfigurations. Das et al. [28] proposed 
to detect inconsistencies of access control updates by correlating access control between group 
memberships and using statistical techniques to find differences between users. Yuan et al. [49] 
dis-covered user-defined policy violations and inconsistencies among firewall rules. There are a 
number of other blackbox [35, 53, 54] and whitebox [48] approaches to detect misconfigurations. 
To the best of our knowledge, none of the existing efforts have been used to analyze misconfig-
urations in Android app manifests.



Detecting and Measuring Misconfigured Manifest in Android Apps27

9 Conclusion
We have presented ManiScope, a tool to automatically construct Android app manifest schema 
from the official documentation and detect misconfigurations in app manifest files. ManiScope 
employs novel domain-aware NLP parsing and pruning techniques that allow it to accurately 
capture positional and quantitative constraints on manifest elements and attributes. We have 
tested ManiScope with 1,853,862 Google Play apps and 692,106 preinstalled apps, with which 
ManiScope identified 609,428 misconfigured Google Play apps and 246,658 misconfigured pre-
installed apps, respectively. We provided an in-depth analysis and measurement of the security 
threats posed by these misconfigurations, together with case studies to show their 
potential impacts.
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