
Detecting and Measuring
Misconfigured Manifest in
Android Apps

Yuqing Yang
The Ohio State University

Ryan Johnson
Quokka

Mohamed Elsabagh
Quokka

Angelos Stavrou
Quokka

Chaoshun Zuo
The Ohio State University

Zhiqiang Lin
The Ohio State University

Detecting and Measuring Misconfigured Manifest in Android Apps2

Detecting and Measuring Misconfigured Manifest in
Android Apps

Abstract
The manifest file of an Android app is crucial for app security as it declares sensitive app con-
figurations, such as access permissions required to access app components. Surprisingly, we
noticed a num-ber of widely-used apps (some with over 500 million downloads) containing mis-
configurations in their manifest files that can result in severe security issues. This paper presents
ManiScope, a tool to automatically detect misconfigurations of manifest files when given an An-
droid APK. The key idea is to build a manifest XML Schema by extracting manifest constraints
from the manifest documenta-tion with novel domain-aware NLP techniques and rules, and
val-idate manifest files against the schema to detect misconfigurations. We have implemented
ManiScope, with which we have identified 609,428 (33.20%) misconfigured Android apps out
of 1,853,862 apps from Google Play, and 246,658 (35.64%) misconfigured ones out of 692,106
pre-installed apps from 4,580 Samsung firmwares, respec-tively. Among them, 84,117 (13.80%)
of misconfigured Google Play apps and 56,611 (22.95%) of misconfigured pre-installed apps
have various security implications including app defrauding, message spoofing, secret data leak-
age, and component hijacking.

CSS Concepts
Security and privacy → Mobile and wireless security; Mobile platform security.

Keywords
Mobile security; security configuration

ACM Reference Format:

Yuqing Yang, Mohamed Elsabagh, Chaoshun Zuo, Ryan Johnson, Angelos Stavrou, and Zhiqiang
Lin. 2022. Detecting and Measuring Misconfigured Manifest in Android Apps. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS ’22), No-
vember 7–11, 2022, Los Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3548606.3560607

Permission to make digital or hard copies of all or part of this work for personal or classroom use is grant-
ed without fee provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

Yuqing Yang
The Ohio State University

Ryan Johnson
Quokka

Mohamed Elsabagh
Quokka

Angelos Stavrou
Quokka

Chaoshun Zuo
The Ohio State University

Zhiqiang Lin
The Ohio State University

https://doi.org/ 10.1145/3548606.3560607
https://doi.org/ 10.1145/3548606.3560607

Detecting and Measuring Misconfigured Manifest in Android Apps3

republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Re-
quest permissions from permissions@acm.org. CCS ’22, November 7–11, 2022, Los Angeles, CA, USA ©
2022 Association for Computing Machinery. ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00 https://doi.
org/10.1145/3548606.3560607

1 Introduction
Android follows a declarative app deployment model where each app is required to declare cer-
tain configurations in a file named AndroidManifest.xml in the root directory of an app package
(APK) [3]. This app manifest file describes essential information about the app to both Android
marketplaces and the Android OS to guarantee proper publishing, installation, and execution of
the app on an end-user’s device. Among many others, an app mani-fest file declares a variety
of important information, including the unique app package name, Android versions compatible
with the app, app components and their security and access control settings, permissions re-
quested by the app, and configurations necessary for libraries and features needed by the app.
Due to its importance to app security and reliability, an app manifest file must pass multiple
checks by Android app develop-ment tools during app development [6], by Google Play during
app publishing [20], and by the Android runtime during app installa-tion and execution [5].
However, by examining the open-source code and documentation on how Android validates a
manifest file, we found that the validation process does not provide systematic coverage of all
possible manifest misconfigurations. While we can-not access the source code of Google Play,
we notice from this documentation [11] that Google Play just filters the elements and attributes
that are related to feature requirements and compatibility, so as to avoid the app being installed
on an incompatible device. Consequently, this can lead to apps with misconfigured manifest files
in the wild, creating security issues as witnessed by the dis-closed CVEs (e.g., CVE-2017-16835
[1] and CVE-2017-17551 [2]). Moreover, our preliminary investigation showed that even some
applications associated with world’s top vendor, e.g., Amazon as shown in Figure 1, may also
involve such mistakes, which may lead to concerning purchase replay attack, inflicting losses to
the vendor.
As such, it is imperative to perform a large-scale study to under-stand the problem of the mis-
configured manifest files, including the history of this misconfiguration problem, the prevalence of
miscon-figuration in current market, and the impact of these miconfigured manifest in the entire
ecosystem, so as to raise the awareness from the community and draw insights to help mitigate
this problem. To perform a systematic and automatic check of the misconfiguration, we utilize
a standard approach to validate the XML files with XSD schema. To generate the XSD schema,
we leverage the official doc-umentation of Android manifest file, which is provided by Google
because it is the only source and standard for developer’s reference when creating manifest
files. Putting it all together, we develop ManiScope, an NLP-based context-aware analysis tool
to identify the manifest entities and their constraints from the documentation, and then generate
the XSD for the validation.
We have implemented ManiScope and tested it with 1,853,862 Android apps collected from Goo-
gle Play between January 2020 and May 2020, and 692,106 pre-installed apps from 4,580 Sam-
sung firmwares (which were released between September 2011 and Janu-ary 2020) collected

https://doi.org/10.1145/3548606.3560607
https://doi.org/10.1145/3548606.3560607

Detecting and Measuring Misconfigured Manifest in Android Apps4

from SamMobile [18]. Our investigation revealed a worrying situation: for Googe Play apps, Man-
iScope detected 265,028 misconfigured elements in 230,330 apps and 718,207 mis-configured
attributes in 428,440 apps (in total 609,428 unique mis-configured apps). For the pre-installed
apps, ManiScope detected 1,731,451 misconfigured elements in 152,046 apps and 386,346
mis-configured attributes in 114,494 apps (in total 246,658 unique mis-configured apps). These
results indicate a concerning prevalence of manifest misconfigurations across mobile apps, and
these problems can date back to the very early Android version (as early as Android 2.0+). More-
over, we found that 84,117 (13.80%) of misconfigured Google Play apps and 56,611 (22.95%)
of misconfigured pre-installed apps could have various security issues, ranging from component
hijacking, data leakage, and app crashes, among others.

Contributions. We make the following contributions:
• We present ManiScope, a novel and open-source tool that is able to extract manifest con-

straints from the Android documentation, build a manifest XML Schema, and detect miscon-
figurations in Android app manifests.

• We propose novel domain- and context-aware NLP techniques to extract manifest con-
straints from the documentation and handle ambiguities and incomplete sentences in the
natural language texts of the documentation.

• We present a large-scale study on over 2.4 million apps and de-tected that about a third of
these apps contain misconfigurations. We provide an analysis of the prevelance, history and
the security threats of these misconfigurations and their root causes.

2 PRELIMINARIES

2.1 Android App Manifest File
An Android app is packaged as an archive file (APK) that con-tains app code, assets, certificates,
along with an app manifest file called AndroidManifest.xml, which is an XML file that specifies
app components (the building blocks of an app, such as activity and receiver), permissions, and
various configurations needed for the proper execution of the app [3]. When installing an app,
the Android PackageParser configures the app’s metadata and runtime settings based on the
configurations defined in the app’s AndroidManifest.xml [5].
As illustrated in Figure 1, app manifest files are composed of XML elements. Each element has a
start and an end tag, can have a number of attributes (e.g., attribute android:name at line 5 that
sets the name of the receiver element), and can contain other nested elements. The elements are
organized in a tree structure where a child element can belong to only one parent element (e.g.,
the <intent-filter> element at line 6 is nested in its parent element <receiver>).

Detecting and Measuring Misconfigured Manifest in Android Apps5

Figure 1. A simplified excerpt from the manifest file of a real-world app containing a misplaced permission
attribute. Due to the severity of this misconfiguration, we redacted the name of the app and the vulnerable

component until the issue is patched.

2.2 Misconfigurations in Manifest Files
The structure of a manifest XML tree specifies the relative positions of the manifest elements,
though it does not enforce any particular occurrence constraints. Elements and attributes in an
Android app manifest file can be required or optional, and some elements can also occur multiple
times. For example, according to the Android Manifest Documentation [3], an <action> element
must occur at least once inside an <intent-filter> parent element.
When developing Android apps, developers have to manually configure app manifest files,
though there are some tools to partially automate some of the configurations. Such manual con-
figurations can certainly introduce errors, as evidenced by the example in Figure 1 in which the
android:permission attribute, which is sup-posed to declare the permission required to access
the <receiver> component, is incorrectly placed in the <action> element instead of <receiver>. As
a result, the receiver component is left unpro-tected at runtime, allowing arbitrary apps to access
and invoke its functionality.
To avoid misconfigurations, developers must clearly understand the XML Schema of app mani-
fest files, i.e., the correct structure and constraints governing elements and attributes in a mani-
fest file. In general, an XML Schema describes three classes of requirements [19], violating any of
which causes misconfiguration: (1) Manifest vocabulary and structure, describing what the valid
elements and attributes are and where exactly they can be placed. (2) Occurrence constraints
dictating how many times an element or an attribute can appear. (3) Valid attribute values and
their data types. Mis-configurations resulting from violating these requirements can be classified
based on their root causes into the following categories:

Detecting and Measuring Misconfigured Manifest in Android Apps6

• Misplaced elements and attributes, which can be caused by (1) an element exceeding the
upper bound of an occurrence (e.g., can only appear once but appeared multiple times), or (2)
an element placed in an unexpected parent (e.g., if <action> element has an invalid parent
<receiver>), or (3) an attribute declared inside a wrong element

 (e.g., android:permission in Figure 1).
• Absent elements and attributes, which occurs when a required element or attribute is miss-

ing, i.e., violating its lower bound occurrence constraint.

Figure 2. Exemple XSD schema snippet for detecting the misconfiguration in Figure 1

• Unexpected elements and attributes, which can be caused by an element or attribute that
does not appear in the valid manifest vocabulary, e.g., an undefined <foo> element or a mis-
spelled element in the app manifest file.

• Wrong attribute values, which can be caused by an attribute val-
ue that does not satisfy the required data types or allowed data val-
ues for the attribute, e.g., value true or false is misspelled for a Boolean type.
Note that a misplaced element or attribute could also be categorized as absent. For instance,
if <action> is misplaced inside <data>, which is required by <intent-filter>, it is identified as
missing under <intent-filter> and misplaced under <data>.

2.3 Approaches for Validating Manifest Files
App manifest files must be validated to ensure their correctness. In fact, Google provides a num-

Detecting and Measuring Misconfigured Manifest in Android Apps7

ber of tools for this purpose. In particu-lar, at development time, Android Studio checks the man-
ifest XML tree for the absence of some critical elements and attributes [6]. During the publishing
phase, Google Play checks the app mani-fest file and applies filters on special compatibility ele-
ments (e.g., <compatible-screen>) to decide which devices are compatible with an app [20]. At
installation time, the Android PackageParser parses the app manifest file in the APK, checks for
required ele-ments, and configures the app runtime accordingly [5].

A systematic and well-known approach to validate a manifest XML file is through the use of a
corresponding XML Schema file that defines the constraints on the structure and content of the
XML file. However, by checking the source code of AOSP [4], we did not find any XML Schema for
app manifest files. Instead we found that AOSP uses hand-rolled code to validate manifest files
[5]. We found that while AOSP validates all manifest attribute values and their data types [8], it
uses ad-hoc constraints to validate the manifest structure itself (e.g., only checking for occurrence
of certain ele-ments and attributes). These hardcoded checks result in incomplete coverage since
hand-rolling a complete XML validator that can capture all possible cases of misoccurrences is
an exhaustive and error-prone task. As a result, many apps end up on the market with critical
misconfigurations, as shown in Figure 1.

Therefore, to systematically validate app manifest files, we need to construct the XML Schema
for Android app manifests and then perform the validation using the schema file. In particular,
we need to know both the structure and occurrence constraints of elements and attributes of an
Android manifest file, where the structure refers to the specific child and parent elements at each
particular position of the XML tree and their corresponding attributes, and occurrence constraints
refer to the upper and lower bounds of the occurrences of a child element in the tree, i.e., whether
it is optional or required and how many times it can appear under the same parent.

After obtaining the structures and occurrence constraints of XML elements and attributes, vari-
ous XML Schema languages, such as Document Type Definition (DTD) [12], Relax-NG [17], Sche-
ma-tron [13], and XML Schema Definition (XSD) [45], can be used to develop a specification
using these structures and constraints to val-idate XML files. XSD is the most popular one among
these schema languages since it is also written in XML, offers a strong set of speci-fication fa-
cilities, and is widely supported by XML parsing packages for many programming languages [7,
21]. XSD supports various fea-tures that can be used to directly describe the correct structure
and constraints of Android manifest elements and attributes: it can de-clare valid child elements
and attributes of each element, minimum and maximum occurrence of elements, and whether
an attribute is required or optional, and so on. An example of an XSD file is shown in Figure 2.
All the tag names in XSD files begin with common prefix xs: since they all belong to the XML
Schema (XS) names-pace. Manifest elements such as <intent-filter> are declared one-by-one
using <xs:element>. It can be noticed that an element is an <xs:complexType> if it contains
both child elements and at-tributes. Child elements are then specified inside <xs:sequence> as
<xs:element> references, and their number of occurrences are specified using the minOccur and
maxOccur attributes. Similarly, valid attributes are specified in <xs:attribute> schema elements.
For a full treatment of XSD, we refer interested readers to XSD definition [45].

Detecting and Measuring Misconfigured Manifest in Android Apps8

3 Overview
The goal of this study is to understand the prevalence, history and security impact of the miscon-
figuration of Android manifest files. As such, we need to first generate the validation schema for
the manifest files. To do so, an intuitive approach is to extract manifest constraints by analyzing
the documentation as it is the official guide used by app developers to develop manifest files.
Unfortunately, this is still non-trivial, requiring overcoming multiple key challenges as discussed
in the following.

3.1 Challanges
C1: Identifying Manifest-Related Documentation Pages. To automatically extract constraints
from the documentation, the first challenge is to identify the documentation pages relevant to
app manifest files. Currently, there are over 1, 000 HTML pages in the latest version of the An-
droid documentation, and they specify con-straints not only related to developing Android apps
and configur-ing manifest files, but also to other XML files such as the Android resource XML
file, which share the similar structure as the manifest documentation. As such, we need to avoid
capturing descriptions in every documentation page; otherwise, a large amount of con-straints
irrelevant to manifest file configuration may be erroneously extracted.

C2: Handling Ambiguity and Incompleteness in Manifest De-scriptions. It is challenging for an
automated system to deal with ambiguities in the descriptions of manifest elements and attri-
butes since they are written in free-form text. Compared with prior NLP-based document mining
techniques (e.g., [22, 32, 43]), we need to perform more complex tasks because we need to not
only identify manifest entities referred to in a sentence and determine their re-lationships (parent
or child), applicable positional and quantitative constraints (see §2), but also translate them to
valid XSD.

Fortunately, we find that sentences discussing manifest elements and attributes have common
structures. First, sentences describing how to configure manifest entities are mostly imperative
sentences that use modal verbs, whereas descriptions specifying maximal occurrences use nu-
merical words to emphasize that an element is unique (e.g., ‘there is only one...’). Second, we
find that the subjects and objects of complete sentences refer to the parent and child ele-ments
respectively. For example, in sentence ‘An <intent-filter> element must contain one or more <ac-
tion> elements’, <action> is the current element and <intent-filter> is its parent. Although in some
contexts, the parent element may be omitted for brevity (e.g., ‘The name must be specified’), the
overall structure of subject–verb–object (SVO) remains.

C3: Performing Context-Aware and Domain-Guided Parsing. Since sentences in the docu-
mentation may omit parent elements for brevity, there may be relevant manifest constraints not
captured by the above two sentence structures. In addition, specifications irrelevant to manifest
constraints may be mistakenly identified as manifest constraints when they use sentences with
SVO structure. Therefore, we need to carefully filter out irrelevant sentences by reasoning about
the context in which a sentence occurs and also using the domain-knowledge extracted to guide
the filtering.

Detecting and Measuring Misconfigured Manifest in Android Apps9

Interestingly, we noticed that the structural information in the manifest documentation can help
build domain-knowledge and identify sentence contexts. Specifically, (1) the omitted entities are
often in a structure context. For example, there is a sentence in the documentation for <activity>
‘The name must be specified’, the omitted <activity> is exactly the name of the documentation.
(2) The element and attribute names in the titles of each section (such as contained in) yields a
dictionary as well as the structure of manifest-related entities, which can be used to build the
domain knowledge and filter out the irrelevant and misplaced ones.

Figure 3. The Workflow of ManiScope.

Figure 4. An excerpt from Google’s official documentation for the <action> element.

3.2 Problem Scope and Assumptions

In this work, we focus on identifying and measuring the unex-pected, misplaced, and missing
manifest configurations by using constraints extracted from the Android manifest documenta-
tion. We assume that the manifest documentation is the ground truth that specifies all con-
straints needed for validating a manifest file. We also assume that input manifest files have valid
value types since this is a requirement for compiling an app and is already han-dled by Android

Detecting and Measuring Misconfigured Manifest in Android Apps10

development tools. Finally, extracting constraints from undocumented manifest elements or at-
tributes that may be internally supported by Android is out of scope.

4 Detailed Design
The workflow of ManiScope is shown in Figure 3. At a high level, it contains five key compo-
nents: Document Collector (§4.1), Positional Constraint Extractor (§4.2), Quantitative Constraint
Extractor (§4.3), Scheme Generator (§4.4), and finally Manifest Validator (§4.5). In this section, we
present the detailed design of these components.

4.1 Document Collector
As described in C1, we need to automatically collect the docu-mentations related to the manifest
file, and extract the structured sections and descriptions for positional and quantitative con-
straint extraction, respectively. To avoid overly capturing the irrelevant elements and attributes
when only using the structure of a docu-ment to determine whether it is related to an app mani-
fest, we use a recursive top-down traversal algorithm to identify the attributes and elements re-
lated to manifest descriptions. In particular, the Document Collector traverses the documentation
pages by starting from the documentation page of the root element <manifest>, then recursively
visiting the documentation pages of each child element.

Figure 5. An example illustrating the dependencies between the words in a sentence, and how the docu-
mentation sentences are divided into subject and object clauses. ManiScope partitions the sentences into

subject and object phrases, and leverages the dependencies to recognize the elements and attributes with
a state machine based parsing approach.

As a result, it fetches manifest documentation pages for all elements that appear in the
manifest file.

4.2 Positional Constraint Extractor
Given the collected manifest documentation pages, our Positional Constraint Extractor parses
each documentation page and extracts child elements under ‘can contain’ and ‘must contain’

Detecting and Measuring Misconfigured Manifest in Android Apps11

sections and attributes under attributes sections, respectively. These child elements and attri-
butes are used to construct positional constraints, i.e., valid child elements and attributes for
each parent element. For example, when parsing the document example in Figure 4, there is an
android:name in the attributes section; therefore, we in-fer that <action> can have a child attri-
bute of android:name. We also infer that the <action> element has no child elements because
there is neither ‘can contain’ nor ‘must contain’ sections in its documentation page. When all the
positional constraints are extracted, the parser generates a dictionary of all of the names of valid
elements and attributes, which is used for filtering out non-manifest related constraints that may
be mistakenly identified by the NLP parser. In addition, the parser also extracts descriptions of
elements under the descriptions section, and attributes under each attribute name, which are
required to extract quantitative constraints as described next.

4.3 Quantitative Constraint Extractor
Since the quantitative constraints are located in descriptions, our Quantitative Constraint Ex-
tractor uses NLP techniques to extract these constraints from free-form sentences in the de-
scriptions. How-ever, these natural language sentences are usually ambiguous and in-complete.
To deal with the challenges of complex sentences (C2) and improve extraction precision (C3),
we design two sub-components:(1) Entity Recognizer (§4.3.1) to identify manifest entities (i.e.,
ele-ments and attributes) and handle ambiguities, and (2) Constraint Filter (§4.3.2) to filter out
non-manifest related constraints.
4.3.1 Entity Recognizer. As discussed in C2, to extract constraints from free-form sentences, we
need to extract manifest entities, their relationships, and handle missing references. To illustrate
these challenges, we present two sentences in Figure 5 with a normal voice (containing nsubj de-
pendency) and a passive voice (contain-ing nsubjpass dependency). The first sentence is written
in normal voice, and it suggests that there is a minimum constraint for the child element <action>
in the parent element <intent-filter>. We observe that these sentences often appear in Sub-
ject-Verb-Object structure. For instance, the subject phrase could be ‘An <intent-filter> element’,
and the object phrase could be ‘one or more <action> elements’. Therefore, we can extract the
parent and child entity from the subject phrase and child phrase, respectively. How-ever, since
these phrases still contain complex structures such as modifiers and conjectures, we still need to
locate the exact word such as <intent-filter> from these phrases, and to handle sentences where
object phrases are omitted (e.g., ‘The name must be specified’). To this end, we extract this infor-
mation by first (i) recognizing sen-tence dependencies using a Finite State Machine (FSM), then
(ii) handling missing entities using contextual information.

Detecting and Measuring Misconfigured Manifest in Android Apps12

Figure 6. The finite state machine (FSM) for identifying ele-ments, attributes, and $context.

(I) Recognizing Sentence Dependencies. We observe that in sentences specifying manifest con-
straints, the parent and child manifest entity appear in subject and object phrases, respectively
(e.g., the child element <action> is in the object phrase ‘one <ac-tion> element’). Therefore, our
Entity Recognizer extracts the parent and child entity by identifying the dependencies of subject
and object phrases until it finds a manifest entity or aborts the parsing based on the FSM, ac-
cording to the dependency encountered at each word. We first identify dependencies used in the
extraction procedure, including subjects (nsubj, nsubjpass), direct objects (dobj), adjective and
noun modifiers (amod, nmod), compound state-ments (compound), and determiners (det) such
as the name of an element. We then process these dependencies using the FSM to trace depen-
dencies and identify entities as shown in Figure 6.

Table 1. Context filtering rules of ManiScope.

In the following, we discuss how our FSM-based approach works using an example of extracting
the parent element <intent-filter> from the first sentence in Figure 5. Specifically, as shown in
Figure 6, starting at the state verb (points to the word ‘contain’ in the input as shown in Figure
5), our Entity Recognizer first moves to the noun state (points to word ‘element’) based on the
state transition of nsubj. Next it moves to adjective state through amod and points to the word

Detecting and Measuring Misconfigured Manifest in Android Apps13

‘<intent-filter>’. Since there are no more dependencies according to the parsed dependencies
illustrated in Figure 5, the Entity Recognizer moves to a special identified state through the none
edge. A none edge is a special edge where the state cannot be transferred. As such, when reach-
ing the identified state, we successfully identify the word ‘<intent-filter>’ as a manifest entity. If
there is no object phrase in the sentence (e.g., no object phrase after ‘specified’ in ‘The name must
be specified’), the Entity Recognizer re-gards the corresponding entity as missing and holds its
processing until more context information is collected, which will be handled in the next step. If
the Entity Recognizer moves to the exit state without reaching the identified state, the tracing
process aborts and no constraint is extracted from the sentence.

(II) Identifying Context Information. Due to the complexity and ambiguity of sentences, there is
a chance where manifest-related constraint is not uncovered by our Entity Recognizer. In general,
there are two scenarios where a sentence containing manifest con-straints may be missed: 1)
when the sentence has a missing entity that needs context information to be resolved (e.g., ‘The
name must be specified’), and 2) when the identified word does not point to a specific manifest
element or attribute (e.g., ‘this element must be placed inside the <manifest> element’). There-
fore, we need to handle these incomplete and ambiguous manifest entities to avoid missing
manifest constraints. To accomplish this, we notice that contextual information in documentation
sections and paragraphs provide enough hints for inferring these missing entities.

• Section-level Context. Section-level context refers to informa-tion about element and attri-
bute names associated with section ti-tles in the documentation . For example, if the sen-
tence ‘The name must be specified’ appears in the description of the android:name attribute
in the documentation section for <activity>, we can associate it with the <activity> element
as its attribute. When a parent entity is missing, we associate the parent entity with the ele-
ment name in the title of documentation (because only elements can be parent entities that
contain child elements or attributes). When a child entity is missing, we associate the en-tity
with the nearest section context: if the sentence is in the description of an element, we as-
sociate the entity with the el-ement name; if it is in an attribute description, we associate it
with the attribute name.

• Paragraph-level Context. At the beginning of paragraphs, we observe that a key sentence
is often used to summarize the mean-ing or functionality of an element or attribute. As such,
we utilize this context to improve the constraint extraction by identify-ing the subject and
object from the first sentence of the para-graph (taking sentence dependencies into ac-
count). Of course, not all paragraphs provide contextual information in the first sentence,
and non-manifest related information may be mis-takenly generated. For example, in the
documentation of the android:backupAgent attribute under the <application> el-ement, the
first sentence says ‘The name of the class that im-plements the application’s backup agent’.
Although the sentence merely indicates that the attribute is associated with a backup agent
class in the source code, the context information may be mistakenly extracted as backupA-
gent. As a result, when we later encounter the sentence ‘The name must be specified’ in the
con-text of android:backupAgent we may identify the child to be ‘name’ but mistakenly iden-
tify parent as backupAgent, which is not a valid manifest entity. Hence, it is vital for utilizing

Detecting and Measuring Misconfigured Manifest in Android Apps14

the knowledge we extracted about manifest file to filter out these non-manifest constraints
to avoid mistakes in the schema.

4.3.2 Constraint Filter.
As discussed in C3, when extracting man-ifest constraints by parsing sentence structures,
non-manifest con-straints can appear in sentences with similar structures. Meanwhile, con-
straints not related to manifest may occur when we infer miss-ing entities from contextual infor-
mation. For example, in the de-scription of android:label in <activity> documentation, ‘The label
is displayed on-screen when the activity must be represented to the user.’ has a similar ‘sub-
ject-verb-object’ structure: written in passive voice with a modal verb ‘must’, our Entity Recogniz-
er identifies the child entity <activity> from the subject phrase, then extracts the missing parent
from context information in the section title (i.e., <activity>). Subsequently, our Entity Recognizer
would extract a constraint that says ‘<activity> must be in <activity>’, which is of course incor-
rect. As such, we need to filter out these erroneously-extracted constraints, and have designed
five rules as shown in Table 1 to filter out the non-manifest constraints at three levels: context,
sentence, and word.

• Context Filter. The context filter uses the contextual relation-ship between the parent and
child entity to filter the non-related constraints. There are three rules used by this filter: (R1)
When extracting constraints from broken phrases and sentences that do not contain any
manifest entities, our recognizer may treat both the parent and child as missing and extract
them from the context. However, there may be sentences completely irrelevant to manifest
constraints where both parent and child entities are mistakenly inferred from the context.
Hence, we need to focus on sentences containing at least one entity explicitly related to
manifest (not inferred from contexts). As such, the constraints where both the parent and the
child are extracted from contextual information need to be filtered out. (R2) As we focus on
manifest-related constraints, it is natural that we force all identified parents and children to
be contained in the manifest dictionary. (R3) In addition, we need to further ensure that ex-
tracted child is within the valid children list of the extracted parents. For instance, if a parent
is action and a child is <intent-filter>, this is not a valid manifest constraint because we know
from manifest dictio-nary that <intent-filter> cannot be a child of <action>.

• Sentence Filter. On top of contextual information, the sentence structures also provide hint
for improving the accuracy. Particu-larly, in rule R4, we use sentence structure to filter sen-
tences with noun (acl) or adverbial clauses (advcl) that voids occurrence constraints in main
clauses such as ‘must have’. For example, in ‘You should always declare this attribute if you
want to configure [...]’, although it seems to be a minimal constraint because this is an imper-
ative sentence with a phrase should always, the adver-bial clause ‘if you want to configure’
have voided such minimal requirement because it indicates that the attribute is mandatory
only when the developer wants a certain configuration to be effective, whereas it is optional
if developers do not want the configuration. Thus, the attribute mentioned in such a sentence
is still optional in the manifest file.

Detecting and Measuring Misconfigured Manifest in Android Apps15

• Word Filter. We also utilize words in sentences to reduce errors in occurrence constraint
extraction, both for minimal and maxi-mal constraints. On one hand, model verbs that carry
strong tone like ‘must’ have to appear to clearly convey the minimal con-straints (‘must have’
constraints). Therefore, we systematically checked all the modal verbs, and found only must
and should conveys such strong tone, whereas other modal verbs can merely convey sug-
gestions or predictions, such as will and may. On the other hand, numerical modifiers, when
accompanied by model verb, help identifying maximum constraints. For example, in ‘Only
one instance of the <compatible-screens> element is allowed in the manifest’, the manifest
entity <compatible-screens> has a numerical modifier one. Therefore, it specifies that the
max-imum of the element is 1. As such, the word filter filters out non-manifest constraints
with a set of modal verb keywords and the numerical modifier dependency nummod (R5)

4.4 Schema Generator
With positional constraints and quantitative constraints extracted and reformed into structured
data, we then generate the XSD file for validation. In particular, the positional constraints are
transformed by declaring each element with xs:element and then listing its child elements in
<xs:element> and attributes in <xs:attribute>, respectively, e.g., in the declaration of <intent-fil-
ter> at line 1 in Figure 2, it contains references to child elements such as <action> at line 4, and
attributes such as android:autoVerify at line 8 (which is declared at line 11). With the structure
of elements and attributes being constructed in XSD, quantitative constraints are generated by
setting minOccurs and maxOccurs for elements, and required for attribute (no maxOccurs for
attributes as they are unique by nature). For example, the minimum occurrence of <action> is 1,
and therefore the minOccurs of <action> is set to 1.

4.5 Manifest Validator
With the generated XSD schema, our Manifest Validator validates an app manifest file by de-
tecting three types of misconfigurations: missing, misplaced, and unexpected. Missing entities
are identified when the validator finds an element or attribute missing. Misplaced and misspelled
entities, however, are both reported as unexpected keywords, so we need to compare the related
element or attribute name with the manifest dictionary. If the entity is a valid mani-fest name, it is
considered misplaced; otherwise, the entity name is misspelled. However, although our validator
can detect all the unexpected attributes and elements, they are not always misspelled by devel-
opers. For example, compilers may add attributes to pro-vide information of the compiler, and
there may be system-only elements and attributes that do not appear in the documentations.
As such, to avoid false-positives of identifying these manifest en-tities as “misspelled”, we only
focus on the following three types of misspelling errors:

• Prefix Errors. This error occurs when developers forget to add or mistakenly add the android:
prefix for an attribute (e.g., android:package v.s. package, and android:name v.s. name). To
identify this type of error, we remove the android: prefix of the encountered attribute name
and compare the attribute name to attributes names in the manifest dictionary (R6).

Detecting and Measuring Misconfigured Manifest in Android Apps16

• Capitalization Errors. A capitalization error occurs when the name of an element or attribute
is mistakenly capitalized (e.g., meta-data v.s. Meta-Data). To identify such errors, we match
the lowercase prefix-free strings of unexpected names to names in the manifest dictionary
(R7 and R8).

• Typos. To identify misspelled element or attribute names (e.g. meta-data v.s. mata-data)
we compute the Levenshtein edit dis-tance between an unexpected name and names in the
manifest dictionary and check if it is below a certain threshold α, indicat-ing the two words
are highly similar (R9 and R10). This threshold must be larger than 0, because no typos will
be identified other-wise. However, if this threshold is set too high, it may introduce a large
amount of false-positives (e.g., the distance between unex-pected name tag and a valid
manifest element name data is 3, and hence if the distance is set too high, our tool will regard
the tag as a misspelled). To minimize possible false-positives, we set α = 1 as default value
for our tool, though it can be configured by users.

5 Evaluation
We have implemented ManiScope in Python. For documentation parsing, we used the lxml [14]
and BeautifulSoup4 [9] libraries. To extract grammatical structures from sentences, we used the
NLTK CoreNLP Parser 3.9.2 [26]. We evaluated ManiScope on 1.8 million Android apps down-
loaded from Google Play between January 2020 and May 2020, and 0.6 million pre-installed
apps collected from 4,580 Samsung firmware (released between September 2011 and January
2020) from SamMobile [18]. We used axmlparserpy [16] to decode the binary manifest file of
each APK into plain-text XML. Our experiments were carried out on a laptop running Ubuntu
18.04.1 with 8 GB RAM and an Intel Core i7-8500U CPU. In this section, we first present our
evaluation results of schema extraction in §5.1. Then, we present our findings with regard to mis-
config-urations in §5.2. Lastly, we provide statistics on security-related misconfigurations in §5.3.

5.1 Manifest Constraint Extraction
(I) Extraction Result. We first present how ManiScope performs when provided with the Android
documentation. Since it is a fully automated system, it can parse all Android documentation
includ-ing the historical ones. As such, we tested ManiScope with 20 different Android documen-
tation from Android developers website from the most recent one (after 7.1.2) to the oldest avail-
able one, namely Android 1.6, and this result is reported in Table 2. Note that the source code of
the historical documentation after 7.1.2 is no longer published on public Google repositories, and
we obtain the most recent one by directly fetching the online HTML files.
In particular, as illustrated in the first row for the most recent doc-umentation, ManiScope col-
lected 26 documentation files related to manifest declaration, and identified in total 348 sections
containing 849 paragraphs. When printing them in a format preserved manner (they are orga-
nized in a structure), we obtained 190 pages. Among the paragraphs parsed, ManiScope found
that 1,326 sentences are written in normal voice and 256 are written in passive voice. Ad-dition-
ally, there are 404 phrases that do not have nominal subjects, either in normal voice or passive

Detecting and Measuring Misconfigured Manifest in Android Apps17

voice, which are identified as simple phrases rather than complete sentences. Our Constraint
Fil-ter filtered over 90% of non-manifest related constraints through context-filtering rules, and
the word filter rules filtered out addi-tional 1.3% of non-manifest constraints, and eventually it
obtained 254 manifest constraints for 28 elements and 125 attributes.

(II) The Evolution of Manifest Documentations. Being able to analyze the historical manifest
documentation, we can draw insights such as how they evolved. As such, we quantified such
evolution by presenting the difference between two adjacent ver-sion of manifest documenta-
tions, as shown in Figure 7. First, we observe that the total sentences of manifest constraints,
although added or removed, are constantly growing, where the growth rate can range from 0%
to over 50%. Second, we notice that during up-dates, sentences may often be removed with
new sentences added, be those removal of deprecated elements or attributes or changes made
to descriptions. Interestingly, we also observe that fixing for some typos that eventually caused
confusion among developers resulted in some of the misconfigurations, which will be introduced
in the correctness evaluation of documentation later.

Table 2. Constraint Extraction Statistics of ManiScope. (vers. = version, sect. = section, para. = paragraph,
constr. = con-straints, extra. = extracted)

Figure 7.The evolution of manifest documentations

Detecting and Measuring Misconfigured Manifest in Android Apps18

(III) False Positives (FPs) and False Negatives (FNs) Analysis of Extracted Constraints. The
accuracy of the extracted constraints directly determines the accuracy of our misconfiguration
detection. Therefore, we must first make sure there is no false positive or false negative. If so,
we must correct them. To validate the accuracy of our constraint extraction, we chose the most
recent documentation and manually constructed the schema by going over all the docu-menta-
tions. In total, there are 190 pages with 849 paragraphs. To generate the ground truth, we have
two security researchers each read the documentations, manually extracted the constraints,
wrote the manifest schemas; then the two researchers cross-validated their results to converge.
It took 20 days for both researchers to read the documentation, pick out manifest-related docu-
mentations, understand contexts, construct schema, and validate them.

Then, we compared the manually constructed ground-truth schemas with the automatically
generated ones. Among them, we found no false positives but 3 false negatives in constraint
genera-tion out of 257 (1.17%) total schema constraints generated manually. The reason is that
the documentation of compatible-screen did not follow the documentation structure. In particu-
lar, it did not specify its child elements in the ‘can contain’ section as other documentations but in
the ‘child elements’ section which is a new section that does not exist in other documentations.
As a result, ManiScope failed to determine that (1) screen is a child of compatible-screen, and
(2) android:screenSize and android: screenDensity is valid attribute in screen, resulting in 3 false
negatives. As this is due to the inconsistent structure of the docu-mentation and easy to fix, we
manually added these elements and attributes to the generated schema of all versions, and then
the generated schema is used to perform the large scale analysis on Android apps as
presented next.

Table 3. Detailed overview of the identified misconfigurations with respect to the number of downloads for
Google Play apps, and different system version for pre-installed apps. Note that Cap. represents Capitaliza-

tion error.

Detecting and Measuring Misconfigured Manifest in Android Apps19

5.2 Manifest Misconfiguration Detection

(I) Detection Result. With the XML schemas reconstructed by ManiScope, we then use them to
detect the misconfigurations in most recent apps in Google Play and preinstalled apps in his-tor-
ical firmware, whose overall results are presented in Table 3. Note that the subtotal of apps may
not always be equal to the subtotal of misconfigurations as a single app may contain multiple
misconfigurations. For Google Play apps, we identified 812,763 mis-placed configurations, 5,379
missing configurations, and 165,093 misspelled configurations. For pre-installed apps, we found
301,654 misplaced configurations, 1,730,628 missing configurations, and 85,515 misspelled
configurations. We found that manifest miscon-figurations are quite prevalent in real-world apps
where more than 30% of these apps have at least one misconfiguration.

Misplaced Configuration. Most of the misconfigurations among manifest files are misplaced
configurations, and ManiScope iden-tified 261,089 misplaced elements and 551,674 misplaced
attributes among the 1.8 million Google Play apps, and 814 misplaced el-ements and 300,840
misplaced attributes among the 0.6 million pre-installed apps, as shown in Table 3. We also found
that most of the misplaced attributes were related to feature requirements (e.g., android:hard-
wareAcclerated, android:required), and most of the misplaced elements were frequently used
manifest elements (e.g., <meta-data>, <category>), and elements used to configure access per-
missions (e.g., <permission>, <uses-permission>). Ad-ditionally, we observed misconfigurations
in extremely popular apps related to icons and themes (e.g., the YouTube app contained a mis-
placed android:theme attribute), although they are likely to be of no security concern.

Missing Configuration. For Google Play apps, missing config-urations occur in both elements
and attribute. For missing ele-ments, all the 3,900 misconfigurations are related to <action> ele-
ment in <intent-filter> element. The missing attributes, on the other hand, mainly involved in
component name attributes (e.g., android:name) and compatibility attributes (e.g., android:minS-
dk Version). One possible explanation is that the compiler already examines some critical missing
problems and aborts compilation if these misconfigurations exist. However, missing configura-
tions are still concerning since they can result in unavailability of app components and create
compatibility issues. For example, if the android:minSdkVersion attribute in the <uses-sdk> ele-
ment is missing, the system regards the app as compatible with all Android versions, which can
cause the app to crash.

For pre-installed apps, although ManiScope did not find any missing attributes, we still identi-
fied a large amount of missing <action> (1,673,727 of 1,730,628) and <application> (56,901 of
1,730,628). This could be explained by the difference between pre-installed apps and Google
Play apps. For instance, compared with Google Play apps that rely on Intents to perform func-
tionality, most of the pre-installed apps do not need to specify actions for intent-filter, and there-
fore many <action> elements are not present in <intent-filter> element.

Misspelled Configuration. ManiScope detected a large num-ber of misspelled elements and at-
tributes. Among them, we found that there are many more typos than capitalization errors (such

Detecting and Measuring Misconfigured Manifest in Android Apps20

as Service v.s. service) in misspelled elements. Also, most of the cap-italization errors of elements
(30 of 39) have the first character capi-talized (e.g., Activity). All the 9 capitlization errors in
pre-installed apps are the first-character-caplitalization problem of <service> (i.e., Service). For
typos of elements, most are due to spelling errors (e.g., mata-data v.s. meta-data, which ac-
counts for 5,585 miscon-figuration among the 6,446 misconfigurations). Another source of typos
comes from a missing hyphen (e.g., intentfilter v.s. intent-filter), and incorrect usage of plural/
singular form (e.g., support-screen v.s. support-screens). For pre-installed apps, 472 out of 486
misconfigurations are typo from intent-filter to intent-flter, whereas the rest 14 are plural prob-
lems, i.e., permission spelled into permissions. For the top misspelled at-tributes, we found that
missing prefixes are most prevalent (e.g., exported v.s. android:exported).

Table 4. CVSS 3.1 scores of security-related misconfigurations. AV: Attack Vector, AC: Access Complexibil-
ity, C: Confidentiality Impact, I: Integrity Impact, A: Availability Impact, G: Google play app, P: pre-installed

app.

(II) FP and FN Analysis of the Detected Misconfigurations. To confirm whether there are any
FPs and FNs in the identified misconfigurations, we manually checked random samples of 500
misconfigurations identified by ManiScope from pre-installed and Google Play apps, respectively.
Among these 1,000 misconfigu-rations, we identified zero FNs but 27 FPs (2.70%). For the false
positives, we found that the root cause is due to the typos in the official documentations, which
involve two attributes: (1) 5 out of 27 FPs involve android:allowBackup, which was misspelled
into android:allowbackup from 4.4.2 to 4.4.4. As such, ManiS-cope may only regard android:al-
lowbackup as correct name for a certain version. If a manifest file contains android:allowBackup
in application element, which is actually correct, ManiScope identifies it as misspelled instead,
resulting in a FP. (2) 22 out of 27 FPs involve resizeableActivity, where the android: prefix is miss-
ing from the documentation. As such, ManiScope will identify the correct attribute with prefix as
misspelled, resulting in a FP. Interestingly, although the typo of allowBackup is fixed after 4.4.4
(but still causing FPs when ManiScope analyzes apps for these versions), the typo of resizeable-
Activity remained until our responsible disclosure as in July 2021.

The reason why we have zero FN is two-fold. First, identifica-tion of positional constraint will
not yield FN because we have enforced an allow-list mechanism to detect misplaced manifest
en-tities. As such, the positional constraint will be even stricter than the documentation if we fail
to extract any positional constraints. As manifest files containing misplaced element will for sure
be inconsistent with the documentation, it will for sure be identified as misplaced by ManiScope.

Detecting and Measuring Misconfigured Manifest in Android Apps21

Second, although the quantitative constraint extraction which involves NLP may have FN if we
fail to extract some quantitative constraints (thus making the constraint less strict than docu-
mentation), we have manually validated with the documentations and found no such a problem.

5.3 Security-Related Misconfigurations
(I) Severity and impacts of the misconfiguration. To deter-mine the security impact of these mis-
configurations, we manu-ally checked all of the elements and attributes associated with the mis-
configurations to understand their potential security impact. Among them, we identified 2 ele-
ments and 13 attributes that could have an impact on security. To rate the security severity of the
identified misconfigurations, we categorized them based on their expected severity according to
the CVSS (Common Vulnerability Scoring System) 3.1 [10] scoring metric. This metric is widely
used in industry and academia to provide an assigned Common Vulner-abilities and Exposures
(CVE) with a severity score. A CVSS score includes six metrics that can be scored with values of
high, medium, and low security impact: the attack vector (same network, adjacent network, local,
or physical access), access complexity (whether an attacker can expect repeatable success or
needs to create certain conditions), confidentiality impact (whether all the exported com-ponents
are divulged to the attacker), integrity impact (whether the attacker can manipulate the file and
data freely), and availability impact (whether it causes a denial of service, or heavy performance
losses). The CVSS scores for these 15 misconfigurations are pre-sented in the
Score-column of Table 4.

According to the CVSS system, among these 15 misconfigura-tions that could cause security
concerns, 3 of them have high sever-ity, 10 have medium severity, and 2 have low severity. These
miscon-figurations can result in various security issues, including compo-nent hijacking, data
leakage, and app crashing. For instance, we can see that apps with a misplaced android:per-
mission attribute are associated with most installs, which may cause purchasing replay attacks.
In addition, some misconfigurations (e.g., the data leakage and component hijacking caused by
the android:allowBackup and android:exported attributes) may also affect both thousands of
Google Play apps and pre-installed apps. However, compared to Google Play apps, the pre-in-
stalled apps make less mistakes, and these pre-installed apps contain significantly less miscon-
figurations in elements and several attributes (e.g., permission). This might be explained by the
limited but essential functionalities of pre-installed apps that make developers avoid using some
manifest entities.

(II) Affected apps with security-related misconfiguration. To further understand the effects of
these misconfigurations, we grouped the Google Play apps based on their categories and the
pre-installed apps on the firmware versions, as shown in Table 5, where the cell color denotes
the scale of total install numbers of affected apps. We notice that most of the misconfigured apps
are in the game category, which may be explained by additional system resources required by
games to avoid decreased performance or process termination. For pre-installed apps, the mis-
configured apps also grow as total amount of apps grow: most of the pre-installed apps are in
version 4 to 8, and the problem still exists in recent devices after version 7.

Detecting and Measuring Misconfigured Manifest in Android Apps22

Table 5. Distributions of security-related misconfiguration in Google Play and Preinstalled apps.

6 Security Case Studies

6.1 Component Hijacking
There are several attributes in the manifest file to protect a compo-nent from unauthorized ac-
cess (i.e., component hijacking). However, with misconfigurations of those attributes, the com-
ponent would have been exposed to attackers. Through a victim’s component, a malicious app
can perform illicit actions such as component hijack-ing, assume there is a malicious app in the
victim’s phone and this app will attack the app with misconfigured attributes.

Misplaced android:permission attribute. This attribute speci-fies the permissions required by
other apps for component com-munication, in order to defend against unauthorized access from
apps that do not have these permissions. Misplaced permissions will allowing arbitrary apps

Detecting and Measuring Misconfigured Manifest in Android Apps23

to interact with them, thereby making the apps vulnerable to component hijacking attacks. As
presented in Table 6(A), among the 10,348 apps that contained misplaced permission attributes,
9,627 of them were related to payment as shown in Figure 1, and all of these affected pay-
ment components are associated with the Amazon Appstore with the majority of these apps
being games (6,561/9,627). We were surprised to find that this flaw primarily stemmed from an
incorrect code snippet provided by Amazon official support team [15] for the Amazon in-app
pur-chasing SDK. Technically, this permission is used to protect the app from fraudulent attempts
to replay transactions. Ironically, such protection is voided by the erroneous code snippet, leaving
thou-sands of apps vulnerable to fraudulent attacks: with the permission enforcement ineffec-
tive, apps can be exploited by purchasing an in-app item and capturing the transaction receipt
sent from Ama-zon Appstore to the app, then replaying that same receipt to the corresponding
receiver at will to repurchase more units without paying. This vulnerability impacted very popular
apps, some of which with more than 100 million installs. We responsibly disclosed this vulnera-
bility to impacted app developers and Amazon, and it has been confirmed right
after our disclosure.

Table 6. Top five categories of apps affected by security-related misconfigurations of different types.

6.2 Data Leakage
On Android, private app data can be copied out of a device using the adb backup command if
an app has its android:allowBackup attribute set to true. In this case study, we present a data
leakage caused by a misplaced android:allowBackup attribute.

Misplaced android:allowBackup attribute. This attribute should be set in the <application> ele-
ment to specify whether or not the app allows its data to be backed up and restored. When de-
velopers set this attribute to false, their intentions are likely to keep sensi-tive user data protected
by preventing this data from being extracted from the device. However, if developers configure it
to be false and misplace it, it will lead to data leakage attacks (i.e., perform backup through adb)
since the default value of this attribute is true. In total, we have identified 7,432 Google Play apps

Detecting and Measuring Misconfigured Manifest in Android Apps24

that have such mis-configuration, as shown in Table 6(B). A concrete example we have investi-
gated is a game named superOscar (with over 10 million downloads) where the android:allow-
Backup=”false” is placed inside the <manifest> element, allowing attackers with physical access
to obtain the login credentials through the backup process.

6.3 Channel Hijacking
Interestingly, on top of the misconfigurations of manifest elements or attributes that are in the
documentation, we also detected a wide usage of elements and attributes that are not on the
documentation, appearing as unexpected elements/attributes but not identified as typos. This
is caused by a set of undocumented manifest entities for applications from Android or OEM
producers carrying system sig-nature only, which are designed for testing or privilege-protected
configuration. Unfortunately, there are still third-party developers that attempt to use these ele-
ments or attributes for configuration, which will eventually be ignored by Android. For instance,
among the undocumented elements, we found a particular element called protected-broadcast
which appeared in 4,098 apps in total. Due to space limits, we only present the top five catego-
ries of each types of componentss as presented in Table 6(C), which contains 3,261 apps in total.
This element is only usable by pre-installed privileged system apps and the Android framework,
allowing them to restrict certain broadcast actions to be sent only by the system. When this
element is configured in third-party apps, the Android PackageParser will silently ignore the el-
ement and no protection will be granted. This can create a severe vulnerability since any app on
the device can send these messages and the receiving app will treat them as though they have
been sent by the system.

7 Discussion

7.1 The Root Causes
There are multiple reasons why misconfigurations exist in the man-ifest of real-world Android
apps. One plausible cause of misconfig-urations is developer’s carelessness, which is similar
to the causes of many other security vulnerabilities. Ideally, instead of allowing developers to
manually configure the manifests, additional tools should be provided to automate these config-
urations to reduce potential errors. Second, as evidenced in §5, the official documenta-tion pages
provided by Google can contain mistakes (e.g., typos, or missing attributes). These errors can
cause confusion to developers, and lead to misconfigurations in the manifest files. Finally, similar
to many other bugs, code reuse is another root cause. For instance, the Amazon app defrauding
case caused by the manifest misconfig-uration of the component exposed 9,474 apps to de-
frauding due to a single misplaced attribute, and we believe this is because develop-ers likely
copied the same code from the official guide on Amazon website when integrating the amazon
in-app purchasing service.

Detecting and Measuring Misconfigured Manifest in Android Apps25

7.2 Mitigation
Explicit warnings during validation. The Android operating system currently only triggers error
logs on essential problems in app manifest files, and these error logs cannot be easily viewed by
the users. Android system could proactively display the warnings to developers and end-users,
to help them identify and fix any issues.

Correct and clear documentations. IDE and SDK providers such as Google and Amazon, should
provide clear documentation to fa-cilitate developer comprehension for manifest configuration.
They also need to ensure that the code snippets provided in their docu-mentation and online
resources are correct. Otherwise, defects in the manifest snippets could be propagated to a large
number of apps. In addition, they should provide systematic, rigorous validation tools for devel-
opers to proactively detect and fix misconfigurations.

Ensuring manifest file correctness. For app developers, they have to ensure that they under-
stand the configurations correctly, and then leverage automated tools to reduce errors. Mean-
while, they have to be careful copying snippets online as they may contain mistakes that eventu-
ally impair the security of their applications.

7.3 Limitations and Future Work
Covering undocumented elements and attributes. Although ManiScope identified all the mani-
fest elements and attributes de-fined in the official documentation, there may be other elements
and attributes defined elsewhere. For instance, developers might define their own attributes and
elements. Also, there might be some attributes and elements exclusively for pre-installed apps.
Future work could automate the element and attribute extraction from other sources in addition
to the official documentation.

Providing more comprehensive case studies. In this paper, we only discussed security-related
cases from three categories of mis-confgiurations. An immediate future work could be perform-
ing more comprehensive case studies to measure and identify the po-tential attacks to raise the
attention from community and fix the problems to prevent from exploitation.

7.4 Responsible Disclosure
We have disclosed our findings to Amazon about the issues in apps that use its in-app purchas-
ing SDK, and the incorrect snip-pets in its documentation and online forum. We have also dis-
closed all issues involving android:allowBackup attribute and <protected-broadcast> element to
developers of impacted apps. Our disclosure of the misconfigurations have been confirmed by
var-ious developers, and we were informed that they have fixed or will fix the issue in the future.
We had also informed Google about typos in documentations, and the issue was then fixed on
July 13th, 2021.

Detecting and Measuring Misconfigured Manifest in Android Apps26

8 Related Work
Extracting information of interest using NLP techniques. As a powerful technique, NLP has
been widely used to extract infor-mation of interest from free-form texts. For example, to extract
constraints from technical documents, Kof et al. and Sadoun et al. [36, 42] combined lexical,
syntactical, and semantic analysis. Ko-rner et al. [37] integrated part-of-speech tagger, statistic
parser, and named entity recognizer to extract the information after splitting the text into chunks,
and then validated them with common sense. NLP has also been used to solve various security
issues, such as de-tecting policy declaration and contradictions (e.g., [22]), bug finding (e.g., [27]),
and cybercrime (e.g., [29, 38, 39, 41, 46]). All of these ef-forts also need to solve the ambiguity
problem. Various approaches have been proposed, by adopting data mining [44], developing
deep learning models [32], or using crowd-sourcing approaches to man-ually identify ontologies
[43, 47]. We enrich the state-of-the-art with NLP techniques to extract XSD
from documentations.

Android security analysis. Numerous prior efforts on Android security have mainly focused on
investigating and identifying secu-rity threats in Android apps including requesting excessive
permis-sions, component hijacking, and insecure driver implementations. For instance, for ana-
lyzing permission issues in Android systems, PSCout [23] adopted code analysis to trace the path
of API calls and permission checks, produced a specification of API permission re-quirements,
while Backes et al. [24] performed analysis of Android permission model across different Android
versions. Approaches to derive precise protection by converting CFG [24] to Access-control flow
graph determining necessary protections have also been pro-posed [24]. Additionally, there have
been efforts that looked into insecure components and driver implementations [30, 31, 34, 40,
50–52]. Compared to these efforts, we systematically investigate novel security issues caused by
manifest misconfigurations.

Detecting misconfigurations. On detecting misconfigurations of Android manifest files, Jha et
al [33] identified configuration errors in about 13, 000 Android apps using manually constructed
constraints. The study, however, relies on predefined rules gathered by manually reading the
documentations, and therefore cannot be adopted to generate schema for various versions of
documentations for pre-installed app validation. Additionally, the manual approach did not pro-
vide a comprehensive coverage of manifest configu-rations, quantitative constraints, nor poten-
tial security issues. To identify potential policy misconfigurations in access control sys-tems, Bau-
er et al. [25] applied association rule mining on previously observed accesses to extract statistical
patterns (i.e., rules), and then used the rules to detect misconfigurations. Das et al. [28] proposed
to detect inconsistencies of access control updates by correlating access control between group
memberships and using statistical techniques to find differences between users. Yuan et al. [49]
dis-covered user-defined policy violations and inconsistencies among firewall rules. There are a
number of other blackbox [35, 53, 54] and whitebox [48] approaches to detect misconfigurations.
To the best of our knowledge, none of the existing efforts have been used to analyze misconfig-
urations in Android app manifests.

Detecting and Measuring Misconfigured Manifest in Android Apps27

9 Conclusion
We have presented ManiScope, a tool to automatically construct Android app manifest schema
from the official documentation and detect misconfigurations in app manifest files. ManiScope
employs novel domain-aware NLP parsing and pruning techniques that allow it to accurately
capture positional and quantitative constraints on manifest elements and attributes. We have
tested ManiScope with 1,853,862 Google Play apps and 692,106 preinstalled apps, with which
ManiScope identified 609,428 misconfigured Google Play apps and 246,658 misconfigured pre-
installed apps, respectively. We provided an in-depth analysis and measurement of the security
threats posed by these misconfigurations, together with case studies to show their
potential impacts.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful feedbacks. The team at The Ohio State Uni-
versity was partially supported by NSF awards 1834215 and 2112471. Any opinions, findings,
conclusions, or recommendations are those of the authors and not necessarily those of the NSF.

REFERENCES
[1] 2017. CVE-2017-16835. https://nvd.nist.gov/vuln/detail/CVE-2017-16835. (Ac-cessed on 2021-
 01-18).
[2] 2017. CVE-2017-17551. https://nvd.nist.gov/vuln/detail/CVE-2017-17551. (Ac-cessed on 2021-
 01-18).
[3] 2021. Android manifest development documents. https://developer.android.com/guide/topics/man
 ifest/manifest-intro. (Accessed on 2021-01-18).
[4] 2021. Android Open Source Project. https://cs.android.com/android/platform/superproject.
[5] 2021. Android Package Parser. http://androidxref.com/9.0.0_r3/xref/frameworks/base/core/java/
 android/content/pm/PackageParser.java#parseVerifier. (Accessed on 2021-01-12).
[6] 2021. Android Studio linter. https://developer.android.com/studio/write/lint.(Accessed on 2021-01-
 18).
[7] 2021. Apache Xerces. https://en.wikipedia.org/wiki/Apache_Xerces. (Accessed on 2021-01-18).
[8] 2021. The attributes used in AndroidManifest.xml. https://cs.android.com/android/platform/super
 project/+/master:frameworks/base/core/res/res/values/attrs_manifest.xml. (Accessed on 2021-01-
 18).
[9] 2021. BeautifulSoup Parser. https://lxml.de/elementsoup.html. (Accessed on 2021-01-18).
[10] 2021. CVSS v3 Calculator. https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator.(Accessed on 2021-
 01-18).
[11] 2021. Filters on Google Play. https://developer.android.com/google/play/filters.(Accessed on 2021-
 01-18).
[12] 2021. Introduction to DTD. https://www.w3schools.com/xml/xml_dtd_intro.asp.(Accessed on

Detecting and Measuring Misconfigured Manifest in Android Apps28

 2021- 01-18).
[13] 2021. An Introduction to Schematron. https://www.xml.com/pub/a/2003/11/12/schematron.html.
[14] 2021. lxml - XML and HTML with Python. https://lxml.de/. (Accessed on 2021-01-18).
[15] 2021. Purchasing Listener doesn’t get called. https://forums.developer.amazon. com/ques
 tions/16519/purchasinglistener-doesnt-get-called.html. (Accessed on 2021-01-18).
[16] 2021. Python AxmlParser. https://github.com/antitree/AxmlParserPY. (Accessed on 2021-01-18).
[17] 2021. Relax NG home page. https://relaxng.org/. (Accessed on 2021-01-18).
[18] 2021. SamMobile - Your authority on all things Samsung. https://www.sammobile. com/.
 (Accessed on 2021-05-30).
[19] 2021. Schema - W3C. https://www.w3.org/standards/xml/schema.
[20] 2021. View & restrict your app’s compatible devices | Play Console Help. https://support.google.
 com/googleplay/android-developer/answer/7353455?hl=en. (Ac-cessed on 2021-01-18).
[21] 2021. XML Schema Languages. https://en.wikipedia.org/wiki/XML_schema# Languages.
 (Accessed on 2021-01-18).
[22] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker, William Enck, Bradley
 Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint: Investigating Internal Privacy Policy
 Contradictions on Google Play. In 28th USENIX Security Symposium, USENIX Security 2019, Santa
 Clara, CA, USA, August 14-16, 2019.
[23] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: ana-lyzing the
 Android permission specification. In the ACM Conference on Computer and Communications Se
 curity, CCS’12, 2012. ACM.
[24] Michael Backes, Sven Bugiel, Erik Derr, Patrick D. McDaniel, Damien Octeau, and Sebastian Weis
 gerber. 2016. On Demystifying the Android Application Frame-work: Re-Visiting Android
 Permission Specification Analysis. In 25th USENIX Security Symposium, USENIX Security 16,
 Austin, TX, USA, August 10-12, 2016.
[25] Lujo Bauer, Scott Garriss, and Michael K. Reiter. 2011. Detecting and resolving policy
 misconfigurations in access-control systems. ACM Trans. Inf. Syst. Secur. 14, 1 (2011), 2:1–2:28.
[26] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python:
 analyzing text with the natural language toolkit. O’Reilly Media.
[27] Yi Chen, Luyi Xing, Yue Qin, Xiaojing Liao, XiaoFeng Wang, Kai Chen, and Wei Zou. 2019. Devils
 in the Guidance: Predicting Logic Vulnerabilities in Pay-ment Syndication Services through
 Automated Documentation Analysis. In 28th USENIX Security Symposium, USENIX Security 2019,
 Santa Clara, CA, USA, August 14-16, 2019. USENIX Association.
[28] Tathagata Das, Ranjita Bhagwan, and Prasad Naldurg. 2010. Baaz: A System for Detecting Ac
 cess Control Misconfigurations. In 19th USENIX Security Symposium, Proceedings. 161–176.
[29] Greg Durrett, Jonathan K Kummerfeld, Taylor Berg-Kirkpatrick, Rebecca S Port-noff, Sadia Afroz,
 Damon McCoy, Kirill Levchenko, and Vern Paxson. 2017. Iden-tifying products in online
 cybercrime marketplaces: A dataset for fine-grained domain adaptation. arXiv preprint
 arXiv:1708.09609 (2017).
[30] Mohamed Elsabagh, Ryan Johnson, Angelos Stavrou, Chaoshun Zuo, Qingchuan Zhao, and
 Zhiqiang Lin. 2020. FIRMSCOPE: Automatic Uncovering of Privilege-Escalation Vulnerabilities in
 Pre-Installed Apps in Android Firmware. In 29th USENIX Security Symposium (USENIX Security
 20). 2379–2396.
[31] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and Narseo Vallina-Ro

Detecting and Measuring Misconfigured Manifest in Android Apps29

 driguez. [n.d.]. An Analysis of Pre-installed Android Software. In 2020 IEEE Symposium
 on Security and Privacy.
[32] Hamza Harkous, Kassem Fawaz, Rémi Lebret, Florian Schaub, Kang G. Shin, and Karl Aberer.
 2018. Polisis: Automated Analysis and Presentation of Privacy Policies Using Deep Learning. In
 27th USENIX Security Symposium, USENIX Security 2018.
[33] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. 2017. Developer mistakes in writing Android
 manifests: an empirical study of configuration errors. In Proceedings of the 14th Interna
 tional Conference on Mining Software Repositories, MSR 2017. IEEE Computer Society, 25–36.
[34] Ryan Johnson, Mohamed Elsabagh, Angelos Stavrou, and Jeff Offutt. 2018. Dazed Droids: A
 Longitudinal Study of Android Inter-App Vulnerabilities. In Proceedings of the 2018 on
 Asia Conference on Computer and Communications Security. ACM.
[35] Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A tool for assessing
 resilience to human configuration errors. In The 38th Annual IEEE/IFIP International Conference on
 Dependable Systems and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska,
 USA, Proceedings. IEEE Computer Society.
[36] Leonid Kof. 2005. Natural Language Processing: Mature Enough for Requirements Documents
 Analysis?. In 10th International Conference on Applications of Natural Language to Information
 Systems, NLDB 2005, Proceedings. Springer.
[37] Sven J. Körner and Mathias Landhäußer. 2010. Semantic Enriching of Natural Language Texts
 with Automatic Thematic Role Annotation. In 15th International Conference on
 Applications of Natural Language to Information Systems, NLDB 2010, Proceedings. Springer.
[38] Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, XiaoFeng Wang, Tongxin Li, and
 Xianghang Mi. 2019. Understanding iOS-based Crowdturf-ing Through Hidden {UI} Analysis. In
 28th {USENIX} Security Symposium ({USENIX} Security 19). 765–781.
[39] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhongyu Pei, Hao Yang, Jianjun Chen, Haixin Duan, Kun
 Du, Eihal Alowaisheq, Sumayah Alrwais, et al. 2016. Seeking nonsense, looking for trouble:
 Efficient promotional-infection detection through semantic inconsistency search.
 In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 707–723.
[40] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX: statically vetting
 Android apps for component hijacking vulnerabilities. In the ACM Conference on Computer and
 Communications Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. ACM.
[41] Rebecca S Portnoff, Sadia Afroz, Greg Durrett, Jonathan K Kummerfeld, Taylor Berg-Kirkpatrick,
 Damon McCoy, Kirill Levchenko, and Vern Paxson. 2017. Tools for automated analysis of
 cybercriminal markets. In Proceedings of the 26th International Conference on World Wide Web.
 657–666.
[42] Driss Sadoun, Catherine Dubois, Yacine Ghamri-Doudane, and Brigitte Grau. 2013. From Natural
 Language Requirements to Formal Specification Using an Ontology. In 25th IEEE Interna
 tional Conference on Tools with Artificial Intelligence, ICTAI 2013, Herndon, VA,
 USA, November 4-6, 2013. IEEE Computer Society.
[43] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan, Jaspreet Bhatia,
 Travis D. Breaux, and Jianwei Niu. 2016. Toward a framework for detecting privacy policy
 violations in Android application code. In Proceedings of the 38th International Conference on Soft
 ware Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016. ACM.
[44] John W. Stamey and Ryan A. Rossi. 2009. Automatically identifying relations in privacy policies. In

Detecting and Measuring Misconfigured Manifest in Android Apps30

 Proceedings of the 27th Annual International Conference on Design of Communication, SIGDOC
 2009. ACM.
[45] Henry S Thompson, Noah Mendelsohn, D Beech, and M Maloney. 2009. W3C XML schema
 definition language (XSD) 1.1 part 1: Structures. The World Wide Web Consortium (W3C), W3C
 Working Draft Dec 3 (2009).
[46] Peng Wang, Xianghang Mi, Xiaojing Liao, XiaoFeng Wang, Kan Yuan, Feng Qian, and Raheem A
 Beyah. 2018. Game of Missuggestions: Semantic Analysis of Search-Autocomplete Manipulations
 In NDSS.
[47] Xiaoyin Wang, Xue Qin, Mitra Bokaei Hosseini, Rocky Slavin, Travis D. Breaux, and Jianwei Niu.
 2018. GUILeak: tracing privacy policy claims on user input data for Android applications.
 In Proceedings of the 40th International Conference on Software Engineering, ICSE 2018. ACM.
[48] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan, Yuanyuan Zhou, and
 Shankar Pasupathy. 2013. Do not blame users for miscon-figurations. In 24th Symposium on
 Operating Systems Principles, SOSP. ACM.
[49] Lihua Yuan, Jianning Mai, Zhendong Su, Hao Chen, Chen-Nee Chuah, and Prasant Mohapatra.
 2006. FIREMAN: A Toolkit for FIREwall Modeling and ANalysis. In 2006 IEEE Symposium on
 Security and Privacy (S&P 2006), 21-24 May 2006, Berkeley, California, USA. IEEE Computer
 Society, 199–213.
[50] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang, Zhiyun Qian, Geng Hong, Yuan Zhang, and Min
 Yang. 2018. Invetter: Locating Insecure Input Validations in Android Services. In Proceedings of
 the 2018 ACM SIGSAC Conference on Computer and Communications Security (Toronto,
 Canada) (CCS ’18). ACM.
[51] Qingchuan Zhao, Chaoshun Zuo, Brendan Dolan-Gavitt, Giancarlo Pellegrino, and Zhiqiang Lin.
 2020. Automatic Uncovering of Hidden Behaviors From Input Validation in Mobile Apps.
 In Proceedings of the 2020 IEEE Symposium on Security and Privacy. San Francisco, CA.
[52] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFeng Wang. 2014. The
 peril of fragmentation: Security hazards in Android device driver customizations. In 2014
 IEEE Symposium on Security and Privacy. IEEE.
[53] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why Does Your Data Leak? Uncovering
 the Data Leakage in Cloud from Mobile Apps. In 2019 IEEE Symposium on Security and
 Privacy, SP 2019. IEEE.
[54] Chaoshun Zuo, Qingchuan Zhao, and Zhiqiang Lin. 2017. AuthScope: Towards Automatic
 Discovery of Vulnerable Authorizations in Online Services. In Pro-ceedings of the 24th
 ACM Conference on Computer and Communications Security (CCS’17). Dallas, TX.

About Quokka, Inc.
The world of digital security is ready to evolve beyond distrust. We want less
fear, and more peace of mind: less worry, and more confidence. Meet Quokka
(formerly Kryptowire), a different kind of mobile security and privacy
 company. Our proactive, light-touch solutions put users and their privacy
first, helping people, teams, and enterprises around the world take back
control of their digital security privacy in the new work and live
anywhere world.

Please visit www.quokka.io or connect with us on LinkedIn and Twitter
(@Quokka_io) for more information.

